

R.B. Firestone

Isotopes Project

Lawrence Berkeley National Laboratory

For all isotopes with Z≤19 the (n, γ) decay schemes are nearly completely determined experimentally. In these cases $\sigma_0 = \Sigma \sigma_{\gamma}(GS) = \Sigma \sigma_{\gamma}(primary)$.

^{6,7}Li(n,γ)

⁹Be(n,γ)

 $\sigma_0({}^9\text{Be})=9.1(7) \text{ mb (EGAF)}$

=8.49(34) mb (Atlas)

^{10,11}B(n,γ)

^{12,13}C(n,γ)

INUCIEAr Data Week 2010

¹²C, ²H Cross Section Discrepancy

The $\sigma_0(^{12}\text{C})$ measurement by Jurney is low by $\approx 10\%$. This suggests that the $\sigma_0(^{2}\text{H})$ measurement by Jurney with the same ^{12}C cross section standard in the same experiment is also low by 10%.

Ratio of ¹⁴N(n, γ) γ -ray intensities measured by Jurney (PRC 56, 118, 1997) to those determined from a least-squares fit to the ¹⁵N level scheme by Belgya (PRC 74, 024603, 2006). Jurney's values are efficiency standards for high-energy γ -rays.

¹⁶Ο(n,γ)

 $\sigma_0(^{16}O)=0.163(3) \text{ mb (EGAF)}$

=0.190(19) mb (Atlas)

.....

BERKELEY

m

²³Na(n,γ) prompt and decay γ-rays

Nuclear Data Week 2010

²³Na(n,γ) discrepancy?

²³ Na	Author (year)	თ ₀ Δσ (m	b)	²³ Na	Author (year)	σ ₀ ∆σ (mb)
	Coltman (1946)	0.47 0.04			Cocking (1958)	0.536 0.006
	Pomerance (1951)	0.470 0.02	24		Jowitt (1959)	0.536 0.008
	Meadows (1961)	0.47 0.06			Rose (1959)	0.539 0.008
	Brooksbank (1955)	0.50 0.05			Gleason (1975)	0.54 0.02
	Koehler (1963)	0.50 0.02			Kaminishi (1963)	0.577 0.008
	Yamamuro (1970)	0.50 0.03			Seren (1947)	0.63 0.13
	Harris (1953)	0.503 0.0	05		EGAF-PGAA	0.540 0.004
	Grimeland (1955)	0.51 0.03			EGAF-NAA	0.542 0.003
	De Corte (2003)	0.513 0.0	06		Atlas	0.517 0.004
	Kennedy (2003)	0.515 0.02	21	^{23m} Na	Author (year)	თ ₀ ∆თ (mb)
	Heft (1978)	0.523 0.0	05		Alexander (1963)	0.40 0.03
	Ryves (1970)	0.527 0.0	05		Groshev (1955)	0.39 0.06
	Szentmiklosi (2006)	0.527 0.0	08		Matsue (2004)	0.476 0.011
	Bartholomew (1953)	0.530 0.0	32		EGAF	0.478 0.004
	Wolf (1960)	0.531 0.0	08		Atlas	0.40 0.03

New measurements are planned to recheck data normalization

^{40,41}K(n,γ)

⁴⁰ K	Author (Year)	σ ₀ Δσ (mb)	⁴¹ K Author (Year)	σ₀ ∆σ (mb)
	Asghar (1978)	30	Seren (1947)	1.0 0.2
	Beckstrand (1971)	30 8	Pomerance (1952)	1.19 0.10
	Pomerance (1952)	66 20	Koehler (1967)	1.2 0.1
	Gillette (1966)	70	Gryntakis (1976)	1.28 0.06
	Atlas	30 8	Gleason (1975)	1.43 0.03
	EGAF*	94 7	Heft (1978)	1.43 0.03
³⁹ K			Ryves (1970)	1.46 0.03
	Pomerance(1952)	2.1 0.2	Kappe (1966)	1.49 0.03
	Gillette (1966)	1.4	Kaminishi (1982)	1.57 0.17
	Hanson (1949)	3.0 1.5	Krusche(1985)-EGAF*	1.523 0.022
	Atlas	2.1 0.2	Atlas	1.46 0.03
	EGAF	2.24 0.04	EGAF	1.523 0.022

Discrepancy between ⁴¹K EGAF data and previous measurements based on NAA may be resolved if $P_{\gamma}(1524.7)=0.1808(9)$ (ENSDF) were replaced with $P_{\gamma}(1524.7)=0.173(3)$ inferred by EGAF.

New normalization and activation measurements are planned.

* Extensive 40 K(n, γ) data of Krusche *et al,* (NPA 417, 1984) were renormalized to EGAF σ_{γ} data.

Light element cross section summary

TUDD

Isotope	σ0 (This work)		σ0 Atlas (2006)		Isotono	σ0 (This work)		σ0 Atlas (2006)		
or ratio	mb except where noted				isotope	mb except where noted				
2H*	0.549	0.010	0.508	0.015	27AI	232.2	1.7	231	3	
6Li	38.2	0.5	38.5	3.0	28Si	187	3	177	4	
7Li	43.9	0.3	45.4	2.7	29Si	128	4	119	3	
9Be	9.1	0.7	8.49	0.34	30Si	116.3	2.3	107	2	
10B	384	8	305	16	31P	169	5	165	3	
11B	9.1	0.3	5.5	3.3	32S	542	7	518	14	
12C	3.84	0.06	3.50	0.07	33S	449	17	454	25	
13C	1.50	0.02	1.37	0.04	34S	284	8	256	9	
14N	80.3	0.4	80.1	0.6	35CI	44.22	0.18 b	43.6	0.4 b	
15N	0.0378	0.0011	0.024	0.008	37CI	407	12	433	6	
16O	0.163	0.003	0.190	0.019	36Ar/40Ar	9.6	1.3	9.5	1.2	
19F	9.51	0.11	9.51	0.09	39K	2250	40	2100	200	
20Ne/22Ne	1.04	0.04	1.12	0.21	40K	94	7 b	30	8 b	
23Na	541	3	517	4	41K	1530	30	1460	30	
24Mg	53.9	0.2	53.8	1.3						
25Mg	196	8	199	3						
26Mg	38.8	1.4	38.4	0.6						

Publication of the Z \leq 19 σ_0 data is planned for 2011.

* Expected value based on new ¹²C standard cross section. A new measurement is planned at Munich Reactor.