HOW TO DRAW A LEVEL SCHEME?

N. NICA

TEXAS A\&M UNIVERSITY

Level Schemes

${ }^{171} \mathbf{Y}$ b

${ }^{155}$ Er

1. Introduction

Population of the entry states

Moments of Inertia

1. Collective rotations - "I(I+1) rule" directly - generating rotational bands based on particular intrinsic configurations (band heads)

$$
E(I)=\frac{\hbar^{2}}{2 \mathfrak{J}} I(I+1)
$$

where \mathfrak{J} is the moment of inertia of the deformed core of nuclei in between closed shells, and \boldsymbol{I} is the (total) nuclear spin

$$
I=R+i
$$

\boldsymbol{R} is the angular momentum of the rotating core
\boldsymbol{i} is the intrinsic single-particle angular momentum
2. Non-collective rotations - of spherical nuclei at closed shells, where the nuclear spin results from successive single-particle alignments and the " $I(I+1)$ rule" is satisfied "on average"

Moments of Inertia: Band ($\mathfrak{J}_{\text {band }}$) and Effective ($\mathfrak{J}_{\text {eff }}$)

Collective Non-collective

Consequences of "I(I+1)" Rule

E2 γ-ray energy:
$E_{\gamma}=E(I)-E(I-2)=\frac{\hbar^{2}}{2 \mathfrak{I}}(4 I-2)=2 c(2 I-1)$

Rotational parameter:

$$
c=\frac{\hbar^{2}}{2 \mathfrak{J}}
$$

γ-ray energy difference

$$
\Delta E_{\gamma}=E_{\gamma}(I)-E_{\gamma}(I-2)=8 \frac{\hbar^{2}}{2 \mathfrak{J}}=8 c
$$

$\gamma-\gamma$ Coincidence Matrix

a)

d)

Exeiled Handa (tw c U_{0}) $\mathbf{5 0 0 0}$

$\gamma-\gamma$ Coincidence Matrix

$\mathrm{E} \boldsymbol{\gamma}_{1}$

E γ_{1}

Repeatability 1: Study of distributions of differences of γ-ray coincidence energies

REPEATABILITY:

- Repeated appearance of satellite peaks relative to the coincidence peaks of a reference rotational band at same location.
- The repeatability peaks are situated on a regular grid with characteristic distance $d_{\text {grid }}$:
$\left(\Delta E_{\gamma_{1}}, \Delta E_{\gamma_{2}}\right)=$

$=\left(E_{\gamma_{1}}^{r}, E_{\gamma_{2}}^{r}\right)-\left(E_{\gamma_{1}}^{s}, E_{\gamma_{2}}^{s}\right)=\left(m \cdot d_{\text {grid }}, n \cdot d_{\text {grid }}\right), \quad m, n \in Z$
$\Sigma=$
- The repeatability peaks appears "statistically" at a number of repeatability positions, including the windows situated on the diagonal of the central valley.

Sample of repeatability around reference band [541]1/2- of ${ }^{163} \mathrm{Tm}$

Repeatable satellite peaks on the regular grid with $\boldsymbol{d}_{\text {grid }}=$ 3.2 keV

$\Delta \mathrm{E} \gamma$ Distribution

 RepeatabilityNon-repeatability

Distribution of distances \boldsymbol{D} (dist) of $\Delta \mathrm{E} \gamma$ distribution
 Repeatability Non-repeatability

Repeatability of [411]1/2+ band in ${ }^{163} \mathrm{Tm}$

$\Delta \mathrm{E}_{\gamma}$ from upper half of coinc. matrix (case "I"): $d_{\text {grid }}=4.5 \mathrm{keV}$

Distributions D (dist): $d_{\text {grid }}=4.5 \mathrm{keV}$
IMP!: Fractal-like structure of hierarchized maxima!

Repeatability of [541]1/2 ${ }^{-}$band in ${ }^{163} \mathrm{Tm}$

D_{S} (dist) distribution $D_{\text {grid }}=0.8 \mathrm{keV}$

Repeatability in ${ }^{163} \mathrm{Tm}$ (all-bands reference, "total reference")

$\Delta \mathrm{E}_{\gamma}$ distribution (1 kev/ch) reveal large scale repeatability pattern with $d_{\text {grid }} \approx 2.7 \mathrm{keV}$

Detail of same $\Delta \mathrm{E}_{\gamma}$ distribution (0.1 kev/ch - default value)

Repeatability in ${ }^{163} \mathrm{Tm}$ (all-bands reference) - cont.

D_{R} (dist) for the detail of $\Delta \mathrm{E}_{\gamma}$ (previous figure), revealing oscillations around plateau

Repeatability pattern with
$d_{\text {grid }} \approx 2.65 \mathrm{keV}$

Repeatability in ${ }^{162} \mathrm{Tm}$ (all-bands reference)

$\Delta \mathrm{E}_{\gamma}$ distribution of type " R " (black points, superposed with their fit with 2D spline functions)

D_{R} (dist) revealing repeatability pattern with $d_{\text {grid }} \approx 3.4 \mathrm{keV}$

Repeatability in ${ }^{168} \mathbf{Y b}$ (all-bands reference)

$\Delta \mathrm{E}_{\gamma}$ distribution of type " S "

D_{S} (dist) revealing repeatability
pattern with $d_{\text {grid }} \approx 3.0 \mathrm{keV}$

Repeatability findings

Nucleus	$D_{\text {grid }}(\mathrm{keV}) /$ Ref. type			
${ }^{163} \mathrm{Tm}$	2.65	4.5	0.8	Obs.
odd	$($ total $)$	$\left([411] 1 / 2^{+}\right)$	$\left([541] 1 / 2^{-}\right)$	$(4.5+0.8) / 2$
162 $\mathbf{T m}$ odd-odd	3.4 (total)			
${ }^{168} \mathbf{Y b}$ even-even	3.0 (total)			

Repeatability:

- regular symmetrical grid of repeated satellite peaks
- everywhere in the coincidence matrix including central valley
- fractal-like structure of hierarchized maxina

Consequences on levels schemes

