HOW TO DRAW A LEVEL SCHEME ?

N. NICA

TEXAS A&M UNIVERSITY

Level Schemes 171Yb 155Er

1. Introduction

Population of the entry states

Moments of Inertia

1. <u>Collective rotations</u> – "I(I+1) rule" directly – generating rotational bands based on particular intrinsic configurations (band heads)

$$E(I) = \frac{\hbar^2}{2\Im}I(I+1)$$

where \Im is the *moment of inertia* of the *deformed core* of nuclei in between closed shells , and I is the (total) nuclear spin

$$I = R + i$$

 \boldsymbol{R} is the angular momentum of the rotating core

 \dot{i} is the intrinsic single-particle angular momentum

2. <u>Non-collective rotations</u> – of *spherical* nuclei at closed shells, where the nuclear spin results from successive single-particle alignments and the "I(I+1) rule" is satisfied "on average"

Moments of Inertia: *Band* (\mathfrak{I}_{band}) and *Effective* (\mathfrak{I}_{eff})

Collective

Non-collective

Consequences of "I(I+1)" Rule

E2 γ -ray energy: $E_{\gamma} = E(I) - E(I-2) = \frac{\hbar^2}{2\Im} (4I-2) = 2c(2I-1)$ 'n **Rotational parameter:** 28 20 $c = \frac{\hbar^2}{2\Im}$ μl

γ-ray energy difference

$$\Delta E_{\gamma} = E_{\gamma}(I) - E_{\gamma}(I-2) = 8\frac{\hbar^{2}}{2\Im} = 8c$$

γ–γ Coincidence Matrix

γ-γ Coincidence Matrix

 $E\gamma_1$

 $E\gamma_1$

<u>Repeatability 1: Study of distributions of differences of</u> γ-ray coincidence energies

REPEATABILITY:

- Repeated appearance of satellite peaks relative to the coincidence peaks of a reference rotational band at same location.

- The repeatability peaks are situated on a regular grid with characteristic distance d_{grid} :

$$(\Delta E_{\gamma_1}, \Delta E_{\gamma_2}) =$$

= $(E_{\gamma_1}^r, E_{\gamma_2}^r) - (E_{\gamma_1}^s, E_{\gamma_2}^s) = (m \cdot d_{grid}, n \cdot d_{grid}), \quad m, n \in \mathbb{Z}$

- The repeatability peaks appears "statistically" at a number of repeatability positions, including the windows situated on the diagonal of the central valley.

 $\Sigma =$

Sample of repeatability around reference band [541]1/2⁻ of ¹⁶³Tm

Repeatable satellite peaks on the regular grid with $d_{grid} =$ 3.2 keV

ΔEy Distribution Repeatability Non-repeatability

Distribution of distances D(dist)of $\Delta E \gamma$ distributionRepeatabilityNon-repeatability

Repeatability of [411]1/2+ band in ¹⁶³Tm

 ΔE_{γ} from upper half of coinc. matrix (case "I"): $d_{grid} = 4.5 \text{ keV}$

Distributions *D(dist)*: d_{grid} = 4.5 keV **IMP!:** Fractal-like structure of hierarchized maxima!

Repeatability of [541]1/2⁻ band in ¹⁶³Tm

 $D_S(dist)$ distribution $D_{grid} = 0.8 \text{ keV}$

Repeatability in ¹⁶³Tm (all-bands reference, "total reference")

 $\Delta E_{\gamma} \text{ distribution (1 kev/ch) reveal}$ $large scale repeatability pattern with}$ $d_{grid} \approx 2.7 \text{ keV}$ Detail of same ΔE_{γ} distribution (0.1 kev/ch - default value)

Repeatability in ¹⁶³Tm (all-bands reference) – cont.

 $D_R(dist)$ for the detail of ΔE_{γ} (previous figure), revealing oscillations around plateau

Repeatability pattern with $d_{grid} \approx 2.65 \text{ keV}$

Repeatability in ¹⁶²Tm (all-bands reference)

 ΔE_{γ} distribution of type "*R*" (black $D_R(dist)$ revealing repeatability points, superposed with their fit with pattern with $d_{grid} \approx 3.4$ keV 2D spline functions)

pattern with $d_{grid} \approx 3.0$ keV

Repeatability findings

Nucleus	D _{grid} (keV) / Ref. type			Obs.
¹⁶³ Tm	2.65	4.5	0.8	2.65 =
odd	(total)	([411]1/2 ⁺)	([541]1/2 ⁻)	(4.5+0.8)/2
¹⁶² Tm	3.4			
odd-odd	(total)			
¹⁶⁸ Yb	3.0			
even-even	(total)			

Repeatability:

- regular symmetrical grid of repeated satellite peaks
- everywhere in the coincidence matrix including central valley
- fractal-like structure of hierarchized maxina

Consequences on levels schemes

