Fission Cross Section Theory

O.Bouland ${ }^{1,2}$, J.E.Lynn ${ }^{1}$, P.Talou ${ }^{1}$
${ }^{1}$ T-2, Nuclear Physics Group, LANL
${ }^{2}$ CEA-Cadarache, France

UNCLASSIFIED

Fission Paths and R-Matrix Approach

- R-matrix approach to fission channel (J.E.Lynn et al.)
- Fission occurring through fission transition states at saddle point
- Well-known complications due to double-hump nature of fission barriers

Starting Point: Hauser-Feshbach

- Cross section for (c,c') channel

$$
\sigma_{c, c^{\prime}}=\sigma_{c, C N} \times \sum_{s^{\prime}=\left|I^{\prime}-i^{\prime}\right|}^{\left|I^{\prime}+i^{\prime}\right|} \sum_{l^{\prime}=\left|J-s^{\prime}\right|}^{\left|J+s^{\prime}\right|} \frac{T_{c^{\prime}}^{J^{\prime}\left(l^{\prime} s^{\prime}\right)}}{\sum_{c^{\prime \prime}} T_{c^{\prime \prime}}^{J^{\prime \prime}\left(l^{\prime \prime} s^{\prime \prime}\right)}}
$$

- Transmission channels T_{c} (neutron, capture) - strength function formalism
- Width fluctuation corrections: Moldauer
- Double-hump barriers
- Class-I and II states
- Class-I: large density of compound states at $\mathrm{E}^{*} \sim \mathrm{~B}_{\mathrm{n}}$
- Class-II: smaller number of states, deviations from statistical distribution
- Residual interaction between class-I and class-II states

$$
H=H_{\eta}+H_{i n t}\left(\zeta, \eta_{0}\right)+H_{c}\left(\eta, \zeta ; \eta_{0}\right)
$$

Class-I and Class-II States

- Eigenstates of total hamiltonian decomposed over intrinsic and collective states

$$
X^{\lambda}=\sum_{\nu \mu} C_{\lambda(\nu \mu)} \Phi_{\nu}^{(\mu)} \chi_{\mu}
$$

- Below inner barrier, $X^{\lambda} \rightarrow$ either class-I or class-II states
- Interaction term H_{c} leads to coupling
- Between vibrational and intrinsic states
- Between class-I and class-II states
- Different approximations depending on degree of coupling
- Undamped vibrations
- Partially damped vibrations
- Completely damped vibrations

Important Model Input Parameters

- Important parameters in calculation
- Fission barrier heights and widths
- Individual transition states and continuum level densities at saddle points
- Coupling terms between class-I and class-II states (coupling strengths, class-II coupling and fission widths, density of class-II states, etc.)

UNCLASSIF

Practical Developments

- Develop new version of AVXSF code from J.E.Lynn
- O.Bouland, CEA, France in visit at LANL for past 2 years
- Fortran 95 version w/ XCode IDE
- First application to suite of plutonium isotopes
- Robust database of consistent model input parameters
- Level densities obtained by either fits to cross section or by combinatorial of singleparticle states from FRLDM calculations
- Publication in preparation
"Low-Energy Neutron-Induced Fission Cross Sections of Plutonium Isotopes", O.Bouland, J.E.Lynn, and P.Talou, to be submitted to Phys. Rev. C.

UNCLASSIFIED

FRLDM potential energy surfaces for Pu isotopes

P.Möller et al. calculations, 2010

Los Alamos
NATIONAL LABORATORY

Preliminary Results for $n+{ }^{239,241} \mathrm{Pu}$ and $\mathrm{n}+{ }^{238,240} \mathrm{Pu}$

Odd target

Even target

Future Work

- Finalize cross-section calculations for suite of plutonium isotopes and publish results
- Release (internally) Version 1.0 of new code
- based on AVXSF code by Lynn
- Integrate new code with other T-2 reaction codes (Kawano, Talou) for improved treatment of competing reaction channels (neutron, capture)
- Study comprehensive fission cross section data: (n, f), ($\gamma, \mathrm{f}),(\mathrm{t}, \mathrm{pf}), \ldots$

