Format Changes for High Energy File

J-Ch Sublet, A J Koning, R A Forrest and J Kopecky

Culham Centre for Fusion Research, Abingdon, United Kingdom Nuclear research and Consultancy Group, Petten, The Netherlands IAEA NDS, Vienna, Austria Juko Research, Alkmar, The Netherlands

CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority

Objective

- To provide a format frame for high energy activationtransmutation files, where it is necessary to completely specify the reaction mechanism in particular for the emitted particles and the residual.
- The number of open channels increases with energy as the number of combinations of the emitted particles increases.
- However, the MT's description has many advantages and proven performance and reliability when carrying out activation-transmutation calculations.

- Reaction types (MT) are identified by an integer number from 1 through 999 with the addition of the (LR) flag to describe simple, complex or breakup reactions and decay modes of the residual nucleus.
- Appendix B of ENDF-102 Formats and Procedures defines the assigned reaction types. Traditionally, 39 MT's have been defined from number 2 to 117 that have been judged to be important for fission reactor type transport calculations below 20 MeV.
- > MT numbers 152 to 200 are unassigned.

Proposal

- Calculation with nuclear reaction model code, such as TALYS, indicate that the addition of 50 more defined MT numbers would make any reaction description complete (+/- 10 mb) up to an incident energy of 60 MeV, for all foreseeable light and heavy target nuclides.
- Some of those MT numbers are by no mean more exotic than some already defined. As an example, the (n,dα) (official ENDF format: MT-117) has been judged as deserving its own MT number, there should be no reason to stop there.
- These new MT numbers are proposed as a practical way to enhance the current and near term activation files. Above about 60 MeV we would need to define so many new MTs that this approach is not feasible and so we must change to total and yields. But use of MTs until 60 MeV seems a better practical approach than making the change at 20 MeV.

Advantages

- A huge advantage of the MT description is that it allows full covariance information to be given in the file (MF-33).
- We really do need an MT for the higher (n,xn) reactions since (n,5n),(n,7n) data are available in EXFOR but at present are ignored in the V&V systems.
- Exclusive definition of reactions and MTs gives us a good way to keep track of the different gas productions, the standard example is (n,np) and (n,d) producing H and D respectively.
- Some experiments count products rather than determining the amount of the daughter so it is best to still think about exclusive reactions.

Format frame

MF	Description for energy < 60 MeV)		
1	General information, comments		
2	Resonance parameter, scattering radius		
3	Total reaction channels		
8	Flag, file pointer, dictionary (pendf only)		
9	Isomeric branching ratio, for non threshold reaction		
10	Split threshold reaction channels		
33	Covariance of neutron cross sections		
40	Covariance for production of radioactive nuclei		
MF	Description for energy > 60 MeV		
6	Activation yields for MT-5		
40	Covariance for radionuclides production yields		

- MF-8, Flag, file pointer, dictionary applied only to the pendf formatted file.
- Branched positive Q values (n,alpha), (n.p) and (n,h) channels are in MF-10, thus not allowed in MF-2.
- Nothing stops anybody to ignore those new MT, backward compatibility.

Simple particles reactions

МТ	Particles	MT Particles	MT Particles	MT Particles
2	n	45 npα	159 2npα	182 dt
4	n'	102 g	160 7n	183 n′pd
5	anything	103 p	161 8n	184 n'pt
11	2nd	104 d	162 5np	185 n´dt
16	2n	105 t	163 6np	186 n´ph
17	3n	106 ³ He	164 7np	187 n'dh
18	fission	107 α	165 4nα	188 n'th
22	nα	108 2α	166 5nα	189 n'ta
23	n3α	109 3α	167 6nα	190 2n2p
24	2nα	111 2p	168 7nα	191 ph
25	3nα	112 ρα	169 4nd	192 dh
28	np	113 t2α	170 5nd	193 ha
29	n2α	114 d2α	171 6nd	194 4n2p
30	2n2α	115 pd	172 3nt	195 4n2α
32	nd	116 pt	173 4nt	196 4npα
33	nt	117 dα	174 5nt	197 3p
34	n ³ He	152 5n	175 6nt	198 n´3p
35	nd2α	153 6n	176 2nh	199 3n2pα
36	nt2α	154 2nt	177 3nh	200 5n2p
37	4n	155 ta	178 4nh	A (
41	2np	156 4np	179 3n2p	Actu
42	3np	157 3nd	180 3n2α	New
44	n2p	158 n′dα	181 3npα	

Actual MT black (29) New MT green (48)

ENDF Summation rules

Table 14: ENDF sum rules for cross sections

MT Sum 2,3 1 3 4-5, 11, 16-18, 22-37, 41-42, 44-45, 152-154, 156-181, 183-190, 194-196, 198-200 50-91 4 18 19-21, 38 27 18, 101, 101 102-117, 155, 182, 191-193, 197 103 600-649 104 650-699 105 700-749 106 750-799 107 800-849

MT Meaning Total cross sections (incident neutrons only) Non-elastic

Total of neutron level cross sections (z,n) Total fission Total absorption Neutron disappearance

Total of proton level cross sections (z,p) Total of deuteron level cross sections (z,d) Total of triton level cross sections (z,t) Total of 3He level cross sections (z,3He) Total of alpha level cross sections (z,α)

Résumé

- Here we purposely frame the formats to provide all the necessary data needed not only at the ENDF level but also during the data file processing, verification and validation processes.
- Detailed ENDF-102 document changes have been proposed.
- Expected modifications for processing codes are minimal if not non-existent for most type of processing.

