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Brief review of T-dependent methods 
• Wigner and Wilkins (1954) 

–  P0 for a constant  isotropic XS 

• Blackshaw and Murray (1967) 
–  P0 and P1 of E-dependent (e.g. resonant) isotropic XS 

• Ouisloumen and Sanchez (1991) 
–  All Legendre moments of E-dependent anisotropic XS 
–  only P0 computed; P1, etc. involve a three-fold nested integral 

• Rothenstein and Dagan (1998, 2004) 
–  Double differential scattering XS (two-fold nested integral) 
–  It reproduces Legendre moments of Ouisloumen and Sanchez 
–  Implemented in NJOY 

•  This Work 
–  All Leg. Moments, Ang. Dist. In CM, via a single(*) integral 
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T-dependent Legendre Moments  

•  Legendre moments of Ouisloumen and Sanchez (Nucl. 
Sci. Eng. 107, 189, (1991)) are three-fold nested integrals 
 computable in principle, but CPU-time consuming € 

σT (E →E ',µlab) = 2n+1
2 σn

T

n≥0
∑ (E →E ')Pn (µlab)
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∞
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Integration by parts of nested integrals 

•  Integration by parts used evaluate the innermost integrals 

    

€ 

P(ECM,µCM ) = 1
4π Bm

m≥0
∑ (ECM)Pm (µCM )

    

€ 

σn
T (E →E ') = σnm

T (E →E ')
m≥0
∑

σnm
T (E →E ')∝ tBm (ECM)σ

0K (ECM )e
−t 2 /Aψnm (t)dt0

∞

∫

•  If the ang. dist. prob. in the CM is a Legendre expansion 

•              in terms of erf(); derivation in a M&C 2011 paper 

€ 

ψnm (t)
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Validation of computed kernels   

• Compared to MC kernels by B. Becker for isotropic XS 
• Compared integral DB XS to the integral of P0(EE’)dE’ 
• Compared to FLANGE method for a constant XS 
•  TO DO: compare anisotropic in the CM to MC for the same 
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Deterministic vs. Monte Carlo 
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Consistency check with integral XS 
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Angular distribution: Blatt-Biedenharn 

• Our first try for anisotropic angular dist. in the CM 
• At  6  eV   ~0.01% effect 
• At  2 keV  ~2%      effect  
• At 10 keV ~10%    effect (show plot) 
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Effect of Blatt-Biedenharn on Legendre m. 
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Uncertainties of DD XS (preliminary) 

• Assuming all uncertainties come from the el. scatt. XS 
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∞

∫
m≥0
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Summary and Outlook 

• Doppler broadened DD XS, or its Leg. mom.’s, is needed 
–  Important for resonances of heavy nuclei below few 100’s eV 

• Exact Legendre moments can now be computed 
–  The original triple-nested integral cast into a single integral  
–  Effects of anisotropic scattering in the CM computable 

• CENTRM: deterministic CE 1-dim discrete ordinates 
–  Solving Boltzmann Eq. on a fine energy mesh, typically 70,000 pts. 
–  Using the scattering kernel in the scattering source computation 

•  Implementation into SAMMY considered (w/ N.M. Larson) 
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Origin and Relevance of σT(EE’,µ)  
• Caused by thermal agitation  Doppler broadening 
• Documented and advocated by Rothenstein, Dagan et al. 

–  Rothenstein and Dagan, Ann. Nucl. En. 25, 209, (1998); NDST2007  
–  Becker, Dagan, Lohnert, Ann. Nucl. En. 36, 470 (2009) ; etc. 

• Asymptotic, or approximate kernels are not sufficient because: 
–  Integral XS is Doppler broadened, but differential XS is NOT, T set to 0 
–  Resonant cross section is approximated by a constant 
–  Does not account for enhanced up- (down-) scattering for E< Er (E>Er) 

• Corrected computation yield: 
–  Pu239 production increased by 2% after 50 MWD/Kg 
–  <440 PCM decrease in criticality of LWR fuel cell at 1200 K 

•  Legendre moments used in deterministic codes (CENTRM) 
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Status of MC and deterministic codes 

• MCNP computes accurate scattering kernels 
–  DBRC implemented in MCNP by B. Becker et al., Ann. Nucl. En. 36 (2009) 470 

–  CE Keno: DBRC method tried and works (Doro Wiarda’s AMPX Status Report). 

• Deterministic codes 
–  NJOY uses DD XS kernel of Rothenstein and Dagan (Dagan et al, NDST 2007) 

–  Direct computation of exact Leg. Mom.’s of scatt. kernel is missing 
•  e.g. CENTRM uses Legendre moments for a constant XS 

• An algorithm for direct computation of Leg. mom.’s of scatt. 
Kernel presented in a later talk 
–  A paper being prepared for the M&C 2011 
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 T-Dep. Scatt. Kernels PT(EE’,m); history 

Wigner	  
Wilkin	  

Blackshaw	  
Murray	  

Ouisloumen	  
Sanchez	  

Rothenstein	  
Dagan	  

This	  work	  

Year	   1954	   1967	   1991	   1998,	  2004	   2010	  

Comments	   Legendre	  
moments	  

Legendre	  
moments	  

d.d.	  XS	  a	  two-‐
fold	  nested	  
integral	  

Legendre	  
moments	  

E-‐dep.	  XS	   No	   Yes	   Yes	   Yes	   Yes	  

P0	   Yes	   Yes	   Yes	  (computed)	   Yes	  (via	  d.d.	  XS)	   Yes	  

P1	   No	  	   Yes	  (not	  comp.)	   Yes	  (not	  comp.)	   Yes	  (via	  d.d.	  XS)	   Yes	  

Pn	  n>1	   No	   No	   Yes	  (three-‐fold	  
nested	  integral)	  

Yes	  (via	  d.d.	  XS)	   Yes	  (single	  integral)	  

Ang.	  dist.	  CM	   No	   No	   Yes	  (in	  principle)	   Isotropic	   Yes	  (Leg.	  mom.)	  


