Temperaturedependent Scattering Kernels for non-Thermal Moderators

G. Arbanas, ORNL R. Dagan, IRS B. Becker, RPI M.L. Williams, ORNL L.C. Leal, ORNL CAK RIDGE NATIONAL LABORATORY MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

CSEWG Meeting Santa Fe, NM, 11/3/2010

Origin and Relevance of $\sigma^{T}(E \rightarrow E', \mu)$

- Caused by thermal agitation \rightarrow Doppler broadening
- Documented and advocated by Rothenstein, Dagan et al.
 - Rothenstein and Dagan, Ann. Nucl. En. 25, 209, (1998); NDST2007
 - Becker, Dagan, Lohnert, Ann. Nucl. En. 36, 470 (2009) ; etc.
- Asymptotic, or approximate kernels are not sufficient because:
 - Integral XS is Doppler broadened, but differential XS is NOT, T set to 0
 - Resonant cross section is approximated by a constant
 - Does not account for enhanced up- (down-) scattering for E< E_r (E>E_r)
- Corrected computation yield:
 - Pu239 production increased by 2% after 50 MWD/Kg
 - <440 PCM decrease in criticality of LWR fuel cell at 1200 K</p>
- Legendre moments used in deterministic codes (e.g. CENTRM) for the U.S. Department of Energy

Status of MC and deterministic codes

- MC codes can implement accurate scattering kernels
 - DBRC tried and works in MCNP; B. Becker *et al.*, Ann. Nucl. En. 36 (2009) 470
 - CE Keno: DBRC method tried and works (Doro Wiarda's AMPX Status Report).
- Deterministic codes
 - Dagan modified NJOY for DD XS of Rothenstein (Dagan et al, NDST 2007)
 - Direct computation of exact Leg. Mom.'s of scatt. kernel is missing
 - e.g. CENTRM uses Legendre moments for a constant XS
- An algorithm for direct computation of Leg. mom.'s of scatt. Kernel presented in a later talk
 - A paper being prepared for the M&C 2011

Stored v. Computed *T*-dep Scatt Kernel

• Stored in ENDF:

- Pros:

- save time to some users
- Legendre moments require less storage than DD XS:
 - $-(E x E' x L_{max}) vs (E x E' x N_{angle})$
- Cons:
 - May not be at the right T or (E→E') grid for an app.
 - More work for evaluators

- Computed by processing codes:
 - Pros:
 - Arbitrary T, or $(E \rightarrow E')$ -grid
 - Uniquely determined by EL XS
 - Less work for evaluators
 - Cons:
 - Computed by users via processing codes; requires more time

Brief review of *T***-dependent methods**

- Wigner and Wilkins (1954)
 - P_0 for a constant isotropic XS
- Blackshaw and Murray (1967)
 - $-P_0$ and P_1 of *E*-dependent (e.g. resonant) isotropic XS
- Ouisloumen and Sanchez (1991)
 - All Legendre moments of *E*-dependent *ani*sotropic XS
 - only P_0 computed; P_1 , etc. involve a three-fold nested integral
- Rothenstein and Dagan (1998, 2004)
 - Double differential scattering XS (two-fold nested integral)
 - It reproduces Legendre moments of Ouisloumen and Sanchez
 - Implemented in NJOY

This Work

for the "All Leg. Moments, Ang. Dist. In CM, via a single(*) integral

T-dependent Legendre Moments

$$\sigma^{T}(E \rightarrow E', \mu_{\text{lab}}) = \sum_{n \ge 0} \frac{2n+1}{2} \sigma_{n}^{T}(E \rightarrow E') P_{n}(\mu_{\text{lab}})$$

 Legendre moments of Ouisloumen and Sanchez (Nucl. Sci. Eng. 107, 189, (1991)) are three-fold nested integrals
 → computable in principle, but CPU-time consuming

$$\sigma_{n}^{T}(E \to E') \propto \int_{0}^{\infty} t \sigma_{s}^{0K}(E_{CM}(t))e^{-t^{2}/A}\psi_{n}(t)dt$$

$$\psi_{n}(t) = \left[H(t-t_{-})H(t_{+}-t)\int_{\varepsilon_{max}-t}^{\varepsilon_{min}+t} + H(t-t_{+})\int_{\varepsilon_{max}-t}^{\varepsilon_{min}+t}\right]$$

$$\times e^{-x^{2}} \int_{0}^{2\pi} P_{n}(\mu_{lab})P(\mu_{CM})d\phi dx$$

$$\mu_{lab} = \mu_{lab}(x,t,E,E'), \ \mu_{CM} = \mu_{CM}(x,t,E,E')$$

$$t = kTu/A, \ x = kTc/A$$

6 Managed by UT-Battelle for the U.S. Department of Energy

Presentation_name

Integration by parts of nested integrals

• If the ang. dist. prob. in the CM is a Legendre expansion

$$P(E_{\rm CM},\mu_{\rm CM}) = \frac{1}{4\pi} \sum_{m \ge 0} \mathsf{B}_{m}(E_{\rm CM}) P_{m}(\mu_{\rm CM})$$

Integration by parts used evaluate the innermost integrals

$$\sigma_n^T(E \to E') = \sum_{m \ge 0} \sigma_{nm}^T(E \to E')$$

$$\sigma_{nm}^T(E \to E') \propto \int_0^\infty t \mathsf{B}_m(E_{\rm CM}) \sigma^{0K}(E_{\rm CM}) e^{-t^2/A} \psi_{nm}(t) dt$$

• $\psi_{nm}(t)$ in terms of erf(); derivation in a M&C 2011 paper

7 Managed by UT-Battelle for the U.S. Department of Energy

Validation of computed kernels

- Compared to MC kernels by B. Becker for isotropic XS
- Compared integral DB XS to the integral of $P_0(E \rightarrow E')dE'$
- Compared to FLANGE method for a constant XS
- TO DO: compare anisotropic in the CM to MC for the same

Deterministic vs. Monte Carlo

Consistency check with integral XS

Angular distribution: Blatt-Biedenharn

- Our first try for anisotropic angular dist. in the CM
- At 6 eV ~0.01% effect
- At 2 keV ~2% effect
- At 10 keV ~10% effect (show plot)

Effect of Blatt-Biedenharn on Legendre m.

Uncertainties of DD XS (preliminary)

• Assuming all uncertainties come from the el. scatt. XS

$$\sigma_n^T(E \to E') \propto \sum_{m \ge 0} \int_0^\infty f_{nm}^T(E \to E', t) \, \sigma^{0K}(E_{\rm CM}(t)) \, dt \qquad \text{a "functional"}$$

$$\left\langle \delta \sigma_n^T(E \to E') \delta \sigma_{n'}^T(E \to E') \right\rangle \propto \sum_{m,m' \ge 0} \int_0^\infty \int_0^\infty f_{nm}^T(E \to E',t) f_{n'm'}^T(E \to E',t') \\ \left\langle \delta \sigma^{0K}(E_{\rm CM}(t)) \delta \sigma^{0K}(E_{\rm CM}(t')) \right\rangle dt dt'$$

$$\left\langle \left(\delta\sigma_{s}^{T}(E \to E', \mu)\right)^{2} \right\rangle \propto \sum_{n,n' \geq 0} \frac{2n+1}{2} \frac{2n'+1}{2} P_{n}(\mu_{\text{lab}}) P_{n'}(\mu_{\text{lab}}) \left\langle \delta\sigma_{n}^{T}(E \to E') \delta\sigma_{n'}^{T}(E \to E') \right\rangle$$

13 Managed by UT-Battelle for the U.S. Department of Energy

Presentation name

Summary and Outlook

- Doppler broadened DD XS, or its Leg. mom.'s, is needed
 - Important for resonances of heavy nuclei below few 100's eV
- Exact Legendre moments can now be computed
 - The original triple-nested integral cast into a single integral
 - Effects of anisotropic scattering in the CM computable
- CENTRM: deterministic CE 1-dim discrete ordinates
 - Solving Boltzmann Eq. on a *fine* energy mesh, typically 70,000 pts.
 - Using the scattering kernel in the scattering source computation
- Implementation into SAMMY considered (w/ N.M. Larson)

7-Dep. Scatt. Kernels P^{\tau}(E\rightarrowE^{\prime},m); history

	Wigner Wilkin	Blackshaw Murray	Ouisloumen Sanchez	Rothenstein Dagan	This work
Year	1954	1967	1991	1998, 2004	2010
Comments		Legendre moments	Legendre moments	d.d. XS a two- fold nested integral	Legendre moments
E-dep. XS	No	Yes	Yes	Yes	Yes
PO	Yes	Yes	Yes (computed)	Yes (via d.d. XS)	Yes
P1	No	Yes (not comp.)	Yes (not comp.)	Yes (via d.d. XS)	Yes
Pn n>1	No	No	Yes (three-fold nested integral)	Yes (via d.d. XS)	Yes (single integral)
Ang. dist. CM	No	No	Yes (in principle)	Isotropic	Yes (Leg. mom.)

