EGAF Publication in NDS

Richard B. Firestone

Isotopes Project, Lawrence Berkeley National Laboratory, Berkeley CA 94720

The Evaluated Gamma-ray Activation File (EGAF) was published with the IAEA* in 2007. We propose that future, more detailed updates of EGF be published in Nuclear Data Sheets.

^{*} Database of Prompt Gamma Rays from Slow Neutron Capture for Elemental Analysis, R.B. Firestone, et al, IAEA STI/PUB/1263, 251 pp(2007)

EGAF Publication

EGAF Publication Considerations

- 1. Publication of Budapest σ_{v} data in refereed journals
- 2. Detailed EGAF evaluation publication in NDS
 - a. Adopted EGAF dataset E_{v} , σ_{v} , k_{0} , σ_{0} , S_{n} , RIPL levels
 - b. Supporting datasets E_{γ} , I_{q}
 - c. Activation decay datasets E_{γ} , P_{γ} , σ_{γ} , k_0
- 3. Database update provided to IAEA

Why Nuclear Data Sheets?

- 1. Existing NDS production procedures are satisfactory
- 2. Only journal suitable for nuclear data publication
- 3. Detailed information on EGAF evaluation considerations

Comments

EGAF Comments Dataset for Na

R.B. Firestone¹ and Zs. Revay²

¹Lawrence Berkeley National Laboratory, Berkeley CA 94530 ²Institute of Isotopes, Hungarian Academy of Sciences, P.O. Box 77, H-1525 Budapest, Hungary

Abstract: Evaluated thermal capture prompt and delayed γ -ray energies, $\sigma\gamma$ cross sections and k_0 valueswere determined for the $^{23}{\rm NA}(n,\gamma)$ reaction. A revised version of the RIPL library for $^{24}{\rm Na}$ was generated and a new, more precise value for S_n was determined.

General Policies and Organization of Material: See the January issue of the Nuclear Data Sheets or http://www.nndc.bnl.gov/nds/NDSPolicies.pdf.

Acknowledgments: This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

General Comments: Neutron capture γ -ray $\sigma\gamma$ data from the cold neutron beam at the Budapest Reactor were combined with capture γ -ray data from ENSDF to determine an evaluated set of energies, σ_{γ} cross sections, and k_0 values for the 23 Na $(n,\gamma)^{24}$ Na E=thermal reaction. The decay scheme is nearly complete with 0.540 3 b observed populating the ground state and 0.537 3 b deexciting the capture state. The activation cross section for 24 Na β - decay (14.997 h) was determined as 0.542 3 b and the activation cross section for 24 Na IT decay was determined as 0.501 3 b. A new Reaction Input Parameter Library was prepared with definite spins and parities determined for the first 30 levels. The neutron separation energy was determined as S_n =6959.527 8 keV in good agreement with S_n =6959.58(8) (2003Au03) adopted by Audi et al.

General comments

23 Na(n, γ) E=thermal

```
EGAF thermal neutron capture adopted E_{\gamma}, \sigma_0, and k_0 data.
```

 σ_0 =0.60 5 (Coltman, PR 69, 411, 1946). Original value σ_0 =0.47 4 b corrected for monitor σ_0 (B)=600 b.

 σ_0 =0.63 13 b (Seren, 1947Se33). Activation method.

 σ_0 =0.490 25 b (Pomerance,PR83,641,1951), Pile oscilator method. Corrected from original value σ_0 =0.470 24 b calibrated assuming σ_0 (197Au)=95 b.

 σ_0 =0.560 32 b (Bartholomew, Can J. Chem 31, 204, 1953). Measured value σ_0 =0.530 32 corrected for monitor value σ_0 (197Au)=93 b.

 σ_0 =0.511 5 b (Harris, ANL-5031 Report, p 68, 1953). Pile oscillator method. Corrected from original value σ_0 =0.503 5 b assuming σ_0 (B)=755 b.

 σ_0 =0.50 5 b (Brooksbank, ANS Transactions, 203, 1955). Activation cross section, monitor σ_0 ⁵⁵Mb=13.3 b.

 σ_0 =0.513 30 b (Grimeland, J. Nucl. En. 1, 231, 1955). Thermal column method. Corrected from original value σ_0 =0.51 3 b calibrated assuming σ_0 (B)=750 b.

 σ_0 =0.536 6 b (Cocking, J. Nucl. En. 4, 33, 1957). Measured by $4\pi\beta\gamma$ coincidence counting. Monitor $\sigma_0(^{197}\text{Au})$ =98.6 b.

 σ_0 =0.536 8 b (Jowitt, Prog. Nucl. En. 3, 242, 1959). Method dimple oscillator reactivity modulation. Monitor $\sigma_0(B)$ =766.6 b.

 σ_0 =0.536 8 b. (Rose, Prog. Nucl. En. 3, 242, 1959). Pile oscillator method assuming $\sigma_0(B)$ =771 b.

 σ_0 =0.531 8 b (Wolf, 1960Wo07). Measured by $4\pi\beta\gamma$ coincidence counting. Monitor $\sigma_0(^{197}\text{Au})$ =98.70 35 b.

σ₀=0.47 6 b (Meadows, 1961Me02) Pulse die away method. Monitor ¹⁹⁷Au.

σ₀=0.50 2 b (Koehler, Zeit. Nat. A18, 1339,1963). Activation cross section with ¹⁹⁷Au monitor.

 σ_0 =0.50 3 b (Yamamuro, Nucl. Sci. Eng. 41, 445 (1970). Measured neutron flux, natural Cd monitor.

 σ_0 =0.526 5 b (Ryves, 1970Ry05). Measured by $4\pi\beta\gamma$ coincidence counting. Monitor $\sigma_0(^{197}\text{Au})$ =98.8 3 b.

 σ_0 =0.54 2 b (Gleason, 1975G109). Activation method. Monitor σ_0 (197Au)=98.88 b.

 σ_0 =0.523 5 b (Heft, Conf. MAYAG, 1978). Activation with natural Sc flux monitor.

σ₀=0.577 8 b (Kaminishi, Jap. J. Appl. Phys. 21, 366 (1982). Activation method.

 $\sigma_0 = 0.513 \text{ 6 b (De Corte, 2003De34)}. k_0 \text{ method.}$

σ₀=0.515 21 (Kennedy, J. Rad. Nucl. Chem. 257, 475, 2003). k0 method.

 σ_0 =0.527 8 b (Szentmillosi, 2006Sz05). Activation with neutron beam.

 σ_0 =0.540 3 b (Budapest prompt γ -ray data to ground state).

 σ_0 =0.534 3 b (Budapest prompt γ -ray data primaries).

 σ_0 =0.542 3 b (Budapest activation γ -ray data).

σ₀=0.517 4 b (Mughabghab, 2006MuZX), Evaluation.

Summary of σ_0 values from the literature (CSISRS) and this evaluation

Levels

²⁴Na Levels

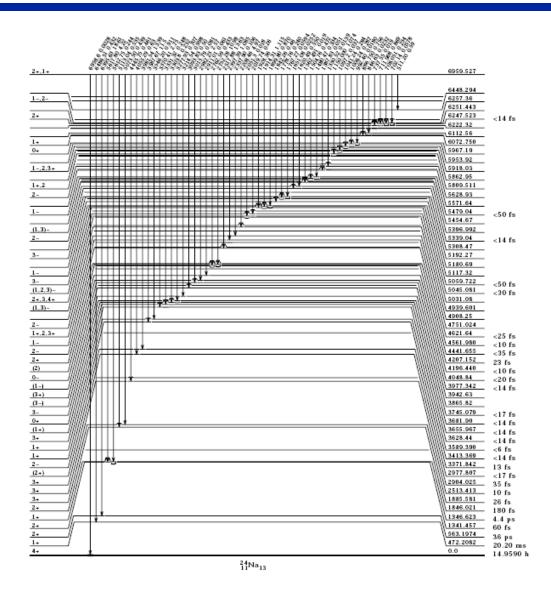
E(level)§	Jπ#	T _{1/2} @	σγ(in) [†]	σγ(out) [‡]	Comments
0.0	4+	14.9590 h <i>12</i>	0.540_3		
472.2082 8	1+	20.20 ms 7	0.508_4	0.501 3	
563.1974 15	2+	36 ps <i>6</i>	0.257_1	0.260 3	
1341.457 5	2+	60 fs <i>20</i>	0.120_1	0.118 2	
1344.644 7	(3)+	26 fs 6	0.0388_3	0.0386 22	
1346.623 5	1+	4.4 ps 3	0.0828_7	0.0805 13	
1515.70 <i>22</i>	5+		0.00013_3	0.00010 2	E(level): Level energy 3-keV higher than Adopted Level (2007Fi14) but consistent with energy shift in 2562.37 adopted level.
1846.021 5	2+	180 fs 25			·
1885.581 4	3+	26 fs 5	0.0097_3	0.00979 6	
2513.413 10	3+	10 fs 3	0.0103_1	0.0102 1	
2564.90 <i>18</i>	4+		6.4E-5_10	2.2×10 ⁻⁴ 4	E(level): Level energy 3-keV higher than adopted level (2007Fi14) but consistent with energy shift in 1514.7 4 adopted level.
2904.025 13	3+	35 fs 6	0.0054_2	0.0055 1	•
2977.807 <i>12</i>	(2+)	<17 fs	0.0760_8	0.0775 4	J π : Adopted J π is (2+,3+), Strong popuation by (n, γ) favors 2+.
3216.7 5	(4+)		1.0E-4_1	7.5×10 ⁻⁵ 11	J π : Adopted J π is (4+,2+), Weak population by (n, γ) favors 4+.

Cross section balance through the (n,γ) level scheme.

Justification of RIPL J^{π} assignments.

Gammas

γ(²⁴Na)


Iy normalization: Normalization to per 100 neutron captures assuming $\sigma_0 \text{=-}0.540~b.$

		σγ ^{‡@}	Mult.	α	Comments
90.9921 14	563.1974	0.250 <i>3</i>	M1	0.00213	k ₀ =0.0329 4.
242.30 9	3655.967	0.000110 11			$k_0 = 1.45 \times 10^{-5} 14$.
340.8 3	4527.3	0.000033 9			$k_0 = 4.3 \times 10^{-6}$ 12.
373.24 6	3589.390	0.000075 7			
	3745.079	0.000075 6			·
387.98 18	3977.342	0.000028 6			v .
472.2027 11	472.2082	0.501 3	М3	0.00047	ů
499.383 5	1846.021	0.01474 22			0
501.30 3	1846.021	0.00308 12			·
504.57 4	1846.021	0.00140 8			v .
511.20 2	6959.527	0.0032 2			·
					·
543.94 13	4751.024	0.000042 7			
551.21 9 4	4207.152	0.000348 13			·
563.1974 16	563.1974	0.00925 8			ů
605.51§ 3	3977.342	0.000159 10			•
617.84 5	4207.152				
662.06 25	4527.3				•
696.570 20	4441.655	0.000215 17			$k_0 = 2.83 \times 10^{-5} 22.$
373.24 6 387.98 18 472.2027 11 499.383 5 501.30 3 504.57 4 511.20 2 543.94 13 551.21§ 4 563.1974 16 605.51§ 3 617.84 5 662.06 25 665.14 12	3589.390 3745.079 3977.342 472.2082 1846.021 1846.021 6959.527 4751.024 4207.152 563.1974 3977.342 4207.152 4527.3 5192.27	0.000075 7 0.000075 6 0.000028 6 0.501 3 0.01474 22 0.00308 12 0.00140 8 0.0032 2 0.000042 7 0.000348 13 0.00925 8 0.000159 10 0.000143 10 0.00006 4 0.00042 5	M3	0.00047	$\begin{array}{l} k_0 = 9.9 \times 10^{-6} \ 9. \\ k_0 = 9.9 \times 10^{-6} \ 8. \\ k_0 = 3.7 \times 10^{-6} \ 8. \\ k_0 = 0.0660 \ 4. \\ k_0 = 0.00194 \ 3. \\ k_0 = 0.000406 \ 16. \\ k_0 = 1.85 \times 10^{-4} \ 11. \\ k_0 = 0.00042 \ 3. \\ \text{E}\gamma, \sigma\gamma: \text{ Expected primary } \gamma - \text{ray, I} \gamma \text{ from the intensity} \\ \text{balance. Observed transition with E=510.94 9 keV,} \\ \sigma\gamma = 0.00552 \ 23 \ \text{b includes annihilation radiation from} \\ \text{pair production.} \\ k_0 = 5.5 \times 10^{-6} \ 9. \\ k_0 = 4.59 \times 10^{-5} \ 17. \\ k_0 = 0.001219 \ 11. \\ k_0 = 2.10 \times 10^{-5} \ 13. \\ k_0 = 1.88 \times 10^{-5} \ 13. \\ k_0 = 8 \times 10^{-6} \ 5. \\ k_0 = 5.5 \times 10^{-5} \ 7. \end{array}$

Gamma ray cross sections and k₀ values

Level scheme drawing

Possibly too complex?

Budapest Data

$\gamma(^{24}Na)$

Iy normalization: Normalization to per 100 neutron captures assuming σ 0=0.540 b.

Εγ†	E(level)	σ _γ †&	Mult.	α	Comments
91.004 15	563.200	0.250 3	М1	0.00213	
242.30§ <i>9</i>	3655.889	0.0001109 11			
340.8 [§] <i>3</i>	4527.3	0.000033§ <i>g</i>			
373.24 [§] 6	3589.209	0.000075 [§] 7			
	3744.928	0.000075 6			
387.98 [§] <i>18</i>	3977.202	0.000028 [§] 6			
472.205 14	472.197	0.501 3	M3	0.00047	
499.363 22	1845.976	0.01474 22			
501.35 4	1845.976	0.00308 12			
504.55 S	1845.976	0.00140 8			
511.20 2	6959.315	0.0032 2			$E\gamma_r\sigma_{\gamma^*}$ Expected primary γ -ray, I γ from the intensity
					balance. Observed transition with E=510.94 9 keV,
					σγ=0.00552 23 b includes annihilation radiation from
543.94 [§] 13	4750 070	0.000042§ 7			pair production.
	4750.870				
551.21 4	4207.020	0.000348 13			
563.171 <i>11</i>	563.200	0.00925 8			
605.51 3	3977.202	0.000159 10			
617.84 [§] 5	4207.020	0.000143 [§] 10			
662.06§ <i>25</i>	4527.3	0.000069 4			
665.14§ 12	5192.13	0.000429 5			
696.570 [‡] 20	4441.525	0.000215			

Typically this is the only source of σ_{γ} data. Reference to the published form of this data will be included.

Second data set - levels

²³Na(n,γ) E=thermal 1983Hu11,1983Ti02

Thermal neutron capture γ-ray Intensity per 100 neutron captures.

Target $J\pi=3/2^+$.

1983Hu11: Measured E γ and I γ with curved crystal (GAMS), Ge(Li), and pair spectrometers. Deduced neutron separation energy S_N=6959.73 keV 14.

1983TiO2: Measured Eγ and Iγ with Ge(Li)-NaI(Ti) AND Ge(Li) pair spectrometer. Deduced neutron separation energy S₃=6959.42 keV 8.

1987Zh12: Measured Eγ and Iγ with Ge(Li)-NaI(Ti) spectrometer. Deduced neutron separation energy S_N=6959.51 keV 21.

²⁴Na Levels

E(level)†	Jπ [‡]	T _{1/2} ‡	E(level)†	Jπ [‡]	T 1/2 ‡
0.0	4+	14.9590 h 12	4186.8 7	2+	<14 fs
472.2069 8	1+	20.20 ms 7	4196.54 6	(1+,2,3+)-	<10 fs
563.1974 16	2+	36 ps <i>6</i>	4207.205 19	2+	23 fs 6
1341.441 10	2+	60 fs 20	4441.68 3	2 –	<35 fs
1344.646 8	(3)+	26 fs 6	4562.056 24	1 –	<10 fs
1346.627 6	1+	4.4 ps 3	4621.60 10	(1+,2,3+)	<10 fs
1846.020 6	2 +	180 fs 25	4691.7 4		<25 fs
1885.506 <i>5</i>	3+	26 fs 5	4751.086 21	2 –	
1960.89 4			4891.26? 5		
1977.05 9			5031.17? 4	(2+,3,4+)	
2513.414 23	3+	10 fs 3	5045.07 3	(1,2,3)-	<30 fs
2562.37 24	(4+,2+)	<17 fs	5059.647 21	3-	<50 fs
2904.10 6	3+	35 fs 6	5117.36 7	1 –	
2977.809 16	(2+,3+)	<17 fs	5192.41 7	3-	<7 fs
3371.853 23	2-	13 fs 3	5252.28 14	3-	
3413.298 25	1+	<14 fs	5339.09 4	2 -	<14 fs
3589.42 4	1+	<6 fs	5397.08 <i>3</i>	(1,3)-	
3628.35 6	3+	<14 fs	5479.07 6	1 –	<50 fs
3655.91 <i>6</i>	(2+,1+)	< 14 fs	5809.579 <i>19</i>	1+,2	
3681.93 12	0+	< 14 fs	5862.93 <i>16</i>		
3745.14 3	3-	<17 fs	5918.357 <i>24</i>	1-,2,3+	
3865.58 <i>8</i>			5953.36? <i>5</i>		
3935.87? 18		< 14 fs	5967.37? 19	0+	<7 fs
3943.48 12		<14 fs	6072.837 16	1+	
3977.40 3	(1-,2+)	<14 fs	6222.35 9		
4048.34 14	0-	70 fs 30	6247.644 17	2 +	<14 fs
4143.1? 3	(4-)	<20 fs	6959.623 14	1+,2+	

Adopted J^π data

[†] from least squares fit to γ energies.

[‡] From adopted levels.

Second data set - gammas

$\gamma(^{24}Na)$

Iγ normalization: Normalized to the intensity of the ²⁴Na decay lines at 1369- and 2754-keV. Systematic errors of 15%, 10% and 5 % were added to the GAMS, Ge(Li) and pair errors, respectively by 1983Hu11. Unplaced gamma intensity is 1.85 5.

90.9921 14 563.1974 41.8 63 x417.08 21 0.049 20 x440.10 11 0.092 17 472.2023 8 472.2069 93.9 74 M3 499.383 5 1846.020 2.4 7 501.30 3 1846.020 0.66 6 504.57 4 1846.020 0.27 3 552.44 8 2513.414 0.127 18 563.186 8 563.1974 1.7 3 614.26 5 1960.89 0.134 16 711.968 10 6959.623 0.90 8	Εγ†	E(level)	Iγ per 100 n [†] §	Mult.‡	δ‡	Comments
737.55 13 6959.623 0.019 6 773.9 3 4751.086 0.073 3 778.22 23 1341.441 1.09 10 781.402 15 1344.646 3.4 3 793.84 6 4207.205 0.39 5	*417.08 21 *440.10 11 472.2023 8 499.383 5 501.30 3 504.57 4 552.44 8 563.186 8 614.26 5 711.968 10 737.55 13 773.9 3 778.22 23 781.402 15	472.2069 1846.020 1846.020 1846.020 2513.414 563.1974 1960.89 6959.623 6959.623 4751.086 1341.441 1344.646	0.049 20 0.092 17 93.9 74 2.4 7 0.66 6 0.27 3 0.127 18 1.7 3 0.134 16 0.90 8 0.019 6 0.073 3 1.09 10 3.4 3	МЗ		I _γ per 100 neutron captures

Continued on next page (footnotes at end of table)

Activation decay data

²⁴Na β- Decay (14.997 h)

Parent $^{24}Mg;$ E=0; J\pi=4+; $T_{1/2}=14.997$ h 12; Q(g.s.)=5515.45 8; % β^- decay=100.

24 Na β- Decay (14.997 h) (continued)

	24Mg Levels	Decay Scheme
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\begin{array}{c} 4+ & 0.0 \\ 24 \\ 12 \\ Mg_{12} \\ \%\beta^-=100 \\ Q^-(g.s.)=5515.45^8 \end{array}$ Intensities: For σ_γ multiply by 0.00541
5235.12 4 3+ † From adopted levels.	eta^- radiations	$Q^{-}(g.s.) = 5515.45^{8}$ $\frac{I\beta^{-}}{0.076} \qquad \frac{\text{Log } ft}{6.60}$ $99.855 \qquad 6.11$ $\frac{1}{4} \qquad \frac{1}{4} \qquad \frac{5235.12}{4238.24}$
Eβ ⁻ E(level) Iβ ^{-†}	Log ft Comments	
(280.33 9) 5235.12 0.076 3 (1392.56 8) 4122.889 99.855 5 (4146.78 8) 1368.672 0.064 6	6.60 2 av Eβ-89.24 22. 6.11 1 av Eβ-554.1 3. 11.34 4 av Eβ-1865.5 3.	$0+$ ψ 0.0 stable $^{24}_{12}\mathrm{Mg}_{12}$

[†] Absolute intensity per 100 decays.

Εγ†	E(level)	Ργ ^{†‡}	Mult.	_ 8	α	I(γ+ce) [‡]	Comments
996.82 9	5235.12	0.0014 2					
1368.626 5	1368.672	99.9936 15	E2		1.3×10-5	3	k ₀ =0.0492 4.
							k ₀ =0.0468 3 (IUPAC, 2003De34).
							P _v : σγ(Budapest)=0.5409 25 b.
2754.007 11	4122.889	99.855 <i>5</i>	E2				P _γ : σγ(Budapest)=0.5433 35 b.
2869.50 <i>6</i>	4238.24	0.00024 3	M1+E2	-23 9			k ₀ =0.0491 4.
							k ₀ =0.0462 4 (IUPAC, 2003De34).
3866.14 10	5235.12	0.056 7	M1+E2	-17 4			P _γ : σγ(Budapest)=0.00042 6 b.
4237.96 6	4238.24	0.00084 10	E2				•

 $\gamma(^{24}Mg)$

 P_{γ} on table, conversion factor to σ_{γ} on drawing

[†] From DDEP evaluation (2004BeZr).

[‡] Absolute intensity per 100 decays.

Other considerations

Theory

- DICEBOX level density and γ-ray strength function parameters
- Calculated continuum (Z>20)
- Calculation population below E_{crit}
- Nuclear model J^π calculations for RIPL

Experiment

- Average resonance data
- Surrogate reaction data
- Granddaughter decay data

Conclusions

- Publication of EGAF data in NDS is straightforward
- Data would be published by elemental sets
- EGAF evaluation in collaboration with LLNL, Budapest, Prague, and the IAEA will continue to be the major effort of the Isotopes Project in the future.
- Others are welcome to participate.