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NIF-National Ignition Facility LU;

725 Wi, , Diagnostics (=$90 M in FY11)
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imaging and time-resolved diagnostics
are planned/operational (developed
over 25 years at NOVA, Omega etc.)

Very mature field

*Nuclear Diagnostics: 10 types of
diagnostics are planned/operational

* nToF, Neutron imaging, Activation,
Charged-particle spectrometry,
Radchem, Gamma Reaction History

NIF Laser System: 192 laser beams
produce 1.8 MJ, IR-UV~> 3w=352nm,
2+ ns, 5x10'4 Watt in 1mm? spot)

What you will hear about today is one of the first eight
approved science proposals (the only one on nuclear physics)







NIF open new avenues of research in ‘! \ L
nuclear physics
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NIF open new avenues of research in
nuclear physics

|

Come to Dennis McNabb’s talk on Friday

Hot
» 1=1-30 keV

Topic #2: Reactions on
highly excited states

Common theme: Reactions on excited states




Most of the heaviest elements (A>56) are made via “‘slow”’ .
neutron capture (s-process) @ 8, 25 keV in massive stars
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How do you measure an astrophysical LLg
(n,y) cross section at NIF?

1. Create the correct environment (neutrons, T, p)

e Fuel load and moderation environment

2. Get the material into the capsule

e Jon-implantation

3. Measure target areal density

e Energy resolved X-ray imaging

4. Measure the number of (n,y) reactions that
took place and the neutron spectrum

 Prompt y-ray detection using Gas Cerenkov Detectors

Quasi-continuum properties are critical




Step 1: Varying the fuel loaded creates w B
wide range of neutron spectra
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Step 1: Varying the fuel loaded creates
wide range of neutron spectra
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Step I: Nuclear-plasma interactions in the HEDP can ‘ ! ! L
cause thermal population of low-lying nuclear states

Photo-absorption Atomic-nuclear (electron) interactions

Time Reverse: y-ray decay NEEC, NEET, IES*
Time Reverse: IC-decay
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Electron-mediated interactions are most important at 7=<keV
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Step 2: D-loaded capsules can be made using a Carbon
nanofoam “scaffold’’ into which ions are implanted*

|

Ion implantation of Xenon
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Step 3: The areal density (oR) of the seeded nuclei can be -
determined using established X-ray imaging techniques®

b Microballoon

Image of
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High resolution spectroscopy
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detailed tracking of seed

nuclei during compression
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“S.P. Regan et al., High Energy Density Physics 5 (2009) 234-243
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Step 4: Prompt y-rays can be measured with the Gas Cerenkov -
detector-based Gamma Reaction History (GRH) system
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What y-ray production rate does GRH see for a ‘ ! ! L
D-fuel capsule loaded with a (n,y) “seed’ nucleus
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What y-ray production rate does GRH see for a ‘ ! ! L
D-fuel capsule loaded with a (n,y) “seed’ nucleus
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The main uncertainty in GRH’s ability to “tag” (n,y) ‘ ! ! L
1s the production of statistical y-rays from the CN
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We would like to measure S , for E},Z3 MeV at the 10% level
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The statistical y-ray spectrum for a (n,y) product could ‘ ! ! B
be measured as part of a surrogate reaction experiment
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“Killing two birds with one stone”

+*R. Hatarik. et al., Phys. Rev. C81 011602(R) (2010) «+B F. Lyles, et al., Phys.Rev. C78, 064606 (2008) - 21 -




Topic #2: In a DT-capsule the huge 14 MeV neutron flux .
means that highly-excited states could become targets LL%
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1s given by:
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* Only long-lived isomers need to be considered as “targets”

— Isomers generally have low E, — reaction Q-value only slightly affected
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Topic #2: In a DT-capsule the huge 14 MeV neutron flux .
means that highly-excited states could become targets LL%
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e The probability that a nucleus A will be converted via (n,2n) to a nucleus A-1
1s given by:

P, =0,,,PR,P, = 10" =10~ for NIF DT capsules

* Only long-lived isomers need to be considered as “targets”

— Isomers generally have low E, — reaction Q-value only slightly affected

Reactions on highly excited states need to be considered it P>exp(-t,/t,,,,)
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A survey of (n,y) resonance widths™ shows that £ ~4-5 MeV ‘ ! ! .
quasi-continuum lifetime are on the order of 7,.,,,,/P

Statistical Cascade
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Product yields are very sensitive to quasi-continuum lifetimes

“RIPL-2 "obninsk" compilation
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Measuring 7. via DSAM (M. Wiedeking) ||

S N A -? Full Shift = Short Lifetime
% § & Energy 2
K 3 W v Forward 2
2. N & o) E
“ 5 & Detector , , ,
< &/ ’ ’ Ener
LS <) Angle , ay
”&'% o -‘ ,
& 0 ’ ,
% o~ //
p N wn MERANEN
| E
! - Y K
1) 0 S )_/_ _—
B I - LS )/
Tareet Backing Material ! R4
e (Au or Pb) No Shift = Long Lifetime

Differences in the shift in discrete transitions using different particle gates will
provide information on the average lifetimes of the gated quasi-continuum region.
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Measuring 7, via DSAM (M. Wiedeking) |5
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Differences in the shift in discrete transitions using different particle gates will
provide information on the average lifetimes of the gated quasi-continuum region.

_28 -



Conclusions LU5

e NIF i1s a totally novel laboratory for studying nuclear
physics in a stellar-like environment

— A large suite of diagnostics are operational at NIF now and more are
planned for the next 2+years

* (n,y) reactions can be studied at NIF using prompt y-ray
detection using the GRH detector system

— Statistical y-ray spectra are required to interpret this data.

* (n,x) on quasi-continuum states can occur in DT capsules

— These reactions are highly dependent on quasi-continuum lifetimes (which
are in turn dependent on photon strength and level densities for £, <S )

e Statistical nuclear properties are critical for interpreting
these results

Early “calibration” experiments (using Ge in the
capsule) are planned for 2011

~20 .




A collaboration is being established to explore

|

nuclear physics @ NIF & statistical y-ray spectra
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Plus any of you that are interested
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