Precision Cross-Section Measurements using Monoenergetic Photon and Neutron Beams at TUNL

Anton P. Tonchev, Calvin R. Howell, Elaine Kwan, Rajarshi Raut,

Gencho Rusev, and Werner Tornow Duke University and TUNL, Durham, NC

John H. Kelley North Carolina State University and TUNL, Raleigh, NC

In collaboration with:

Los Alamos National Laboratory, Lawrence Livermore National Laboratory

Research Objectives

> Perform new precision (*n*,*xnp*) cross-section measurements on actinides at

 $E_n = (4 \text{ to } 18) \text{ MeV}$ to uncertainties smaller than 5 %.

Important for:

- Basic science (testing nuclear models)
- Nuclear astrophysics (s- and p-processes)
- Nuclear energy and nuclear transmutation
- Nuclear forensics
- Accelerator application (radiation shielding)
- Medical applications (isotope production)
- > Improving our understanding of the actinide nuclear data through complementary (γ, xn) cross-section measurements.
- > Techniques: direct measurements using monoenergetic beams
 - Photo- and Neutron Activation Analysis
 - In-beam (n,n') and (γ,γ') measurements

Americium Campaign

Nuclear reaction chain on Am isotopes

$\Delta \mathbf{A} = {}^{240}\mathbf{Am}/{}^{241}\mathbf{Am}$

- Sensitive to high-energy neutrons ²⁴¹Am(n,2n) cross section needed

²⁴²Cm/²⁴¹Am

- Sensitive to low-energy n's
- ^{241,243}Am(n,γ) cross section needed

- \Box CS saturation at E_n=12.5 MeV
- \Box $\sigma_{max} = 264 \text{ mb}$
- **\Box** Rule out the CS data at $E_n=11$ MeV
- ENDF-B/VII agrees well with the TUNL data

A. P. Tonchev et al., PRC 77, 054610 (2008)

A. P. Tonchev et al., PRC **77**, 054610 (2008) C. Sage et al., PRC **81**, 064604 (2010)

- \Box CS saturation at E_n=12.5 MeV
- $\Box \sigma_{max} = 264 \text{ mb}$
- \Box Rule out the CS data at $E_n = 11 \text{ MeV}$
- □ ENDF-B/VII agrees well with the TUNL data
- □ IRMM 2010 extended the ²⁴¹Am(n,2n) crosssection measurements up to $E_n = 21$ MeV
- □ IRMM data confirmed the earlier TUNL

measurements

²⁴¹Am(γ,n)²⁴⁰Am Cross Section Measurements

Motivation:

- ²⁴¹Am(γ,n)²⁴⁰Am reaction is complementary to the ²⁴¹Am(n,2n)²⁴⁰Am
- > ²⁴¹Am is the most important minor actinide
- > It is one of the most harmful radioisotopes
- Data needed for advanced fuel cycle, new fast reactors, and transmutation studies

Goal: To measure the ²⁴¹Am(γ ,n) cross section within (5 to10) % uncertainty for $E_{\gamma} = 6.7$ MeV to 20 MeV

High Intensity Gamma-Ray Source (HIGS)

What makes HIGS unique?

- 1. Nearly monoenergetic beam $\Delta E/E = 0.01 0.03$
- 2. Tunable from (1 to100) MeV
- 3. Photon flux $> 10^7 \text{ s}^{-1} \text{ cm}^{-2}$ on target

Advantages:

- 1. Intense peak in narrow energy window
- 2. Excite only at energy and levels of interest

²⁴¹Am Target Production

Americium Signature

> Measured 500-1500 γ events after 12 h of irradiation and two days of counting time

Measured nine energies in 2009

Measurements of the 241 Am(γ ,n) Reaction Cross Section at HIGS

 The cross section saturates at E_n = 12.5 MeV
 σ_{max} = 200 mb at E_n=12.5 MeV
 Present data supports a single Lorentzian curve

A.P. Tonchev *et al.* AIP **1099**, 820 (2009) A.P. Tonchev *et al.* Accepted to PRC (2010)

Measurements of the 241 Am(γ ,n) Reaction Cross Section at HIGS

 The cross section saturates at E_n = 12.5 MeV
 σ_{max} = 200 mb at E_n=12.5 MeV
 Present data supports a single Lorentzian curve

A.P. Tonchev *et al.* AIP **1099**, 820 (2009) A.P. Tonchev *et al.* Accepted to PRC (2010)

Measurements of the $^{241}Am(\gamma,n)$ Reaction Cross Section at HIGS

- The cross section saturates at $E_n = 12.5 \text{ MeV}$
- \Box $\sigma_{max} = 200 \text{ mb at } E_n = 12.5 \text{ MeV}$
- Present data supports a single
 Lorentzian curve
- The ²⁴¹Am(γ,n) cross section is consistent with other fissile nuclei like ²³⁵U and ²³⁹Pu
- HIGS make possible cross section measurements using radioactive targets with µg quantities.

A.P. Tonchev *et al.* AIP **1099**, 820 (2009) A.P. Tonchev *et al.* Accepted to PRC (2010)

Cross-Section Measurements on Ga and As

Importance: semiconductor materials; nuclear reaction mechanism studies; testing the statistical model.

Astrophysical relevance: ^{73,75}As are important *p*-process nuclei

71As 65.28 H € 100.00%	72As 26.0 H € 100.00%	73As 80.30 D €: 100.00%	74As 17.7 7h 2 ε: 66.00% β-: 34.00%	75As NSTABLE 100%	76As 1.0942 D β-200.00%
70Ge STABLE 20.37%	71Ge 11.43 D € 100.00%	72Ge STABLE 27.31%	73Ge STACKE 7 2 5%	74Ge STABLE 36.73%	75Ge 82. 8 M β-: 100.00%
69 Ga STABLE 60.108%	70Ga 21.14 M β-: 99.59% ε: 0.41%	71Ga STABLE 39.892%	72 <mark>, α</mark> 14.095 H β-: 100.00%	73Ga 4.86 H β-: 100.00%	74Ga 8.12 M β-: 100.00%

TABLE I: Neutron induced reactions on GaAs and monitor foils measured in the present work.

Reaction	Product	Q-value	E_{γ}	I_{γ}
Chaimer	nan-me	(keV)	(keV)	(%)
	GaAs	Reactions		
${}^{69}\text{Ga}(n,2n){}^{68}\text{Ga}$	67.71 m	-10312.95	1077.34	3.22
$^{69}\text{Ga}(n,p)^{69m}\text{Zn}$	13.76 h	-127.44	438.634	94.77
71 Ga $(n, p)^{71m}$ Zn	3.96 h	-2031.0	386.28	93
$^{75}As(n, 2n)^{74}As$	17.77 d	-10243.76	634.78	15.4
$^{75}\mathrm{As}(n,p)^{75}\mathrm{Ge}$	$82.78~\mathrm{m}$	-393.63	264.6	11.4
	Monitor	Reactions		
197 Au $(n, 2n)^{196}$ Au 27 Au $(n, 2n)^{24}$ Na	6.1669 d	-8072.39	355.73	0.87
$AI(n,\alpha)$ Na	14.997 11	-3132.14	1306.020	99.9930
73	As targe	et produce	ed at LA	NL
^{nat} Ge(p,xn) production reaction at IPF (LANSC				
$E_p = 100 \text{ MeV}, I_p = 250 \mu \text{A}$				
500 mCi of ⁷³ As				

These cross section measurements on stable Ga and As targets are important steps to understand the $(n,Xn\gamma)$ measurements on radioactive ⁷³As target.

Activation Measurements at TUNL

Activation Measurements at TUNL

Neutron Induced Reactions on Ga and As

R. Raut et al. Prepared for publication in PRC

Neutron Induced Reactions on Ga and As

Shape of the ¹⁴⁷Nd FPY at low incident neutron energy

- > A slope to the ¹⁴⁷Nd FPY has been reported at low incident neutron energy
- > (3.7% per MeV at 1.5 MeV, Chadwick, et al.)
- > The slope to the ¹⁴⁷Nd FPY at low energies is determined from
 - Critical assembly measurements
 - Fast reactor measurements
- Critical assembly measurements require detailed knowledge of the neutron flux to develop an "average" neutron energy
 - > Measurements with monoenergetic neutrons avoid this issue
- Proposal: Measure FP gamma-ray yields relative to ¹⁴⁰Ba reference
- > Report:
 - > FP Yield Ratios (< 1%), consistency, Thermal to 14 MeV E_n
 - > FP Energy Dependence ¹⁴⁷Nd (< 1.5%), Thermal to 8 MeV E_n
 - > FP Yields (8 10%)
 - ▹ Focus on ¹⁴⁷Nd, ⁹⁹Mo, ⁹⁵Zr

Energy dependence of ¹⁴⁷Nd (and other) products in the ²³⁹Pu (n,f) reaction - Thermal to 16 MeV

A.P. Tonchev et al., 2010 TUNL Progress Report.

- > A total of nine measurements have been performed at HIGS for the ${}^{241}\text{Am}(\gamma,n){}^{240}\text{Am}$ reaction from E_{γ} = 9.6 MeV to 16.0 MeV.
- Precision cross-section measurements on Ga and As targets from 7 MeV to 15 MeV.
- First measurements of the neutron induced fission fragment yields at TUNL.

Summary

TUNL

Duke:

A.S. Crowell B. Fallin C.R. Howell A. Hutcheson E. Kwan R. Raut G. Rusev A.P. Tonchev W. Tornow **Univ. of N. Carolina:** S. Hammond **N. Carolina State:** J.H. Kelley D. Dashdorj^{*} C. Huibregtse

Livermore

J.A. Becker D. Dashdorj^{*} J. Kenneally R.A. Macri D. Shaughnessy M.A. Stoyer Ch.Y. Wu E. Bond J. FitzPatrick

Los Alamos

R.S. Rundberg A. Slemmons W. Taylor

D.J. Vieira J.B. Wilhelmy

This research was sponsored in part by the Office of Science of the US Department of Energy (DOE): DE-FG02-97ER41033 and National Nuclear Security Administration grants: DE-PS52-08NA28920 and DE-FG52-09NA29448.

Sources of Uncertainties

Source of uncertainty	Magnitude (%)					
Source of uncertainty	Am	Monitors				
Relative uncertainties						
Count rate (statistics and background)	2-5	<1				
γ -ray absorption in sample	<1	<0.1				
Sample mass ($\gamma + \alpha$ counting)	2	<1				
Total relative uncertainties	5.3	1.7				
Absolute uncertainties						
Detector efficiency	2	2				
γ-ray emission probability	1.1	<1				
Half-life	<1	<1				
Coincidence summing	<2	<1				
Absolute source activity	1					
Gamma flux fluctuation	<1.0					
Reference monitor cross section		3-5*				
Total uncertainty	4.6	5.7				

* NNDC web side

Experimental Results

Neutron	Cross Section (mb)				
Energy	⁶⁹ Ga(n, 2n) ⁶⁸ Ga	69 Ga $(n, p)^{69m}$ Zn	71 Ga $(n, p)^{71m}$ Zn	$^{75}As(n, 2n)^{74}As$	$^{75}As(n, p)^{75}Ge$
(MeV)					
7.5 ± 0.2		9.3 ± 0.3	1.3 ± 0.1		5.6 ± 0.2
8.0 ± 0.1		10.5 ± 0.3	1.9 ± 0.1		8.3 ± 0.3
8.5 ± 0.2		12.8 ± 0.5	2.3 ± 0.2		9.8 ± 0.5
9.5 ± 0.1		16.1 ± 0.5	3.8 ± 0.2		11.8 ± 0.5
10.2 ± 0.1		18.7 ± 0.9	5.8 ± 0.6		14.7 ± 0.7
11.0 ± 0.1	6.9 ± 0.8	21.5 ± 1.2	7.4 ± 0.4		18.2 ± 1.0
11.5 ± 0.1	71.6 ± 3.5	23.3 ± 0.8	8.0 ± 0.5	209.3 ± 21.9	18.7 ± 0.8
12.5 ± 0.1	309.7 ± 10.5	26.9 ± 1.0	10.5 ± 0.4	534.6 ± 37.6	22.9 ± 0.9
13.25 ± 0.1	716.1 ± 21.2	28.8 ± 1.3	12.2 ± 0.7	845.0 ± 60.7	26.9 ± 0.9
14.0 ± 0.1	694.9 ± 22.3	29.0 ± 0.8	11.8 ± 0.4	896.5 ± 64.4	25.5 ± 1.3
14.5 ± 0.1	688.1 ± 21.6	29.1 ± 0.8	11.8 ± 0.4	969.7 ± 68.9	27.2 ± 1.5
15.0 ± 0.1	713.5 ± 22.4	$30.0 {\pm} 0.9$	$11.8 {\pm} 0.4$	$918.6 {\pm} 65.5$	28.0 ± 1.3

TABLE II: Sources and approximate magnitudes (in %) of the uncertainties in the present cross section measurements.

Uncertainty	Magnitude
	(%)
Statistics	1-2 ^a
Sample mass	< 1
Detector efficiency	2-3
Branching ratio	≤ 1
Product half-life	≤ 1
Monitor cross section	1-4 (Al)
	1-4 (Au) ^b
Low energy neutrons	< 1
Total ^c	3-5

In-Beam Measurements at TUNL

A. Hutcheson et al., PRC 80, 014603 (2009)

Cross Section Measurements using the Monoenergetic HIGS beams

Activation technique: separate irradiation from measurement time \Rightarrow low background, high sensitivities, highly accurate residual identification Relative measurements: ¹⁹⁷Au(γ ,n) and ⁵⁸Ni(γ ,n) as monitor reactions

Summary

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

