Preliminary Evaluation Including Covariance for ²³⁷Np and ²⁴⁰Pu above resonance region

Hyeong II Kim Korea Atomic Energy Research Institute

Introduction Methodology Results Summary

Introduction

 The evaluated nuclear data with covariance matrices of Minor Actinides need for future applications

> Advance Fuel Cycle (AFC), Safeguards, Fast reactor, etc

- A KAERI-ORNL collaborative work under International Nuclear Energy Research Initiative (INERI) program
 - Nuclides: ²³⁷Np, ²⁴⁰Pu, and ²⁴⁰⁻²⁵⁰Cm
 - ORNL: Low energy region
 - KAERI: Fast region
- Producing the evaluation files with covariance data, and then testing them through sensitivity/uncertainty calculations for some benchmark problems

Evaluation & Covariance Procedure

EMPIRE-3 calculation

✓ OMP

- An isospin-dependent coupled-channels optical model potential containing the dispersive term (DCCOMP) suggested by Capote et al.. (RIPL # 2408)
- Hauser-Feshbach with HRTW
- DEGAS for gamma and PCROSS for others in preequilibrium
- Empire specific level densities
- Gamma strength function by plujiko(MLO1)
- Double-humped fission barrier
 - OMPs for fission suggested are modified in order to reproduce the measurements of fission cross section

Covariances

EMPIRE-KALMAN

Covariances above resonances

- Sensitivity matrices from 3 ~ 5 % variations of model parameters around optimal value
- Using uncertainties of measurements if available
- Using pseudo data with 10% uncertainty for the cross section of model calculation if no measurement is available

Preliminary file

- Present list of covariance data generated:
 - MT=1,2,4,16,17,18,22,24,(51-91),102,103,107
- ➢ MF=32 from ORNL for (²³⁷Np, ²⁴⁰Pu, ²⁴⁴Cm)
- Getting from JENDL-4 (nu-bar, fission neutron spectra, MF 31)

Total & Elastic Cross sections

Capture & Inelastic Cross sections

- 6 -

(n,2n) & (n,3n) Cross sections

Fission Cross sections

- 8 -

Uncertainties for cross sections with measurements

CSEWG, Santa Fe, 1-3 Nov. 2010

Uncertainties for cross sections with measurements

Uncertainties for cross sections with no measurement

Correlation

ш

ð

r²⁴⁰Pu(n,f)

구원

한국원자

Korea Atomic Energy Research Institute

KAERI

Covariance data of (n,f) for ²³⁷Np and ²⁴⁰Pu

CSEWG, Santa Fe, 1-3 Nov. 2010

- 12 -

Correlation

Sensitivity and Uncertainty Analysis of k_{eff}

- Data preparation
 - > NJOY99/TRANSX
 - Reference data: JENDL-3.3
 - Energy group: SCALE 44-group
- Forward/adjoint flux distribution
 - DANTSYS
 - $> P_3 S_{16}$ approximation
- S&U analysis of k_{eff}
 - SUSD3D
 - Total fission (MT=18) and total v (MT=452 or MT=455+456) covariance data
 - Covariance data: JENDL-3.3, Low-fidelity, New covariance data

Very useful for assessing the new covariance data through inter-comparison of uncertainty by constituting nuclides and by nuclear reactions for a specified nuclides of interest

KAERI

Korea Atomic Energy Resea

Fictitious critical system searched by JENDL-3.3-based DANTSYS calculation

No.	Actinide	Critical Radius (cm)
1	92-U-233	5.72
2	92-U-235	8.25
3	93-Np-237	9.20
4	94-Pu-239	4.95
5	94-Pu-240	7.24
6	94-Pu-241	5.20
7	95-Am-241	11.33
8	95-Am-243	15.54

✓ Total uncertainties(~2.5%) for ²⁴⁰Pu-, ²⁴¹Am-, and ²⁴³Am-fictitious cores are due to large uncertainties in total nu-bar, total fission, and capture covariance data

CSEWG, Santa Fe, 1-3 Nov. 2010

- 15 -

Total k_{eff} uncertainties

✓ Total k_{eff} uncertainty for Lo-Fi ²³⁷Np became extremely large caused by large fission covariance data.

✓ KAERI/ORNL covariance brings about nearly the same total k_{eff} uncertainty estimation as JENDL-4.0.

- underestimate total fission
- overestimate inelastic scattering

✓ Total k_{eff} uncertainty for Lo-Fi ²⁴⁰Pu became extremely large caused by large fission and total nu covariance data.

✓ Total uncertainty with KAERI/ORNL covariance is comparable to those with JENDL-4.0.

✓ slight increase of total fission

CSEWG, Santa Fe, 1-3 Nov. 2010

- 16 -

Summary

- \checkmark We produced neutron cross section files of ²³⁷Np and ²⁴⁰Pu.
- Covariance matrices for ²³⁷Np and ²⁴⁰Pu were generated by the EMPIRE-KALMAN approach considering sensitivity matrices of model calculations and uncertainties of experimental data
- A Fictitious system was constructed for testing of our covariance data

✓ Further works

- Covariances for angular distributions and nu-bar would be added.
- Too small uncertainties will be rectified through analyzing measurements more carefully.
- > Since then, covariance files for all curium isotopes will be generated.

