Covariances for^{204, 206-208}**Pb** and ²⁰⁹**Bi**

M.T. Pigni, *et al*. Brookhaven National Laboratory, National Nuclear Data Center

 $1^{st} - 5^{th}$ November 2010, Santa Fe, NM

a passion for discovery

Introduction

- Neutron cross-section covariances for Leads and ²⁰⁹Bi
 - Thermal Region ATLAS (S.F. Mughabghab)
 - Resolved Resonance Region ATLAS + Kercen (P. Oblozinsky)
 - Resonance parameters uncorrelated
 - Assigned correlations
 - Other criteria adopted
 - Fast Neutron Region EMPIRE + Kalman
 - Model calculations + selected experiments
- Assumptions
 - (co)variances for AFCI-2.0β
 - (co)variances coupled to ENDF/B-VII.0
 - (co)variances possible candidate for ENDF/B-VII.1
- Timeline history
 - Covariances in ENDF/B-VI.8 (for Leads central values differ from ENDF/B-VII.0)
 - Low-fidelity covariances (2008 estimates from model calculations)
 - AFCI covariances (2010)

Methodology

- Thermal and Resolved Resonance Region
 - Thermal Region ATLAS (S.F. Mughabghab)
 - Resolved Resonance Region (RRR) Different criteria adopted
 - ATLAS + Kernel approx. (P. Oblozinsky)
 - (n,el) dominated by potential scattering ($\Delta R'$ multiplied by 1.5/2.0, P. Oblozinsky/S.F. Mughabghab)
 - For $\sigma < 3$ mb, $\Delta \sigma > 25\%$ (P. Oblozinsky), mostly for (n, γ)
 - Uncertainty for capture resonance integral (ΔI_{γ} multiplied by 1.5/2.0, P. Oblozinsky)
 - Cross-section correlations assigned, $<\Delta\Gamma\Delta\Gamma>=50\%$, $<\Delta R' \Delta\Gamma_n>=-50\%$ (P. Oblozinsky)

Fast Neutron Region

- Empire code (sensitivity matrices)
 - Coupled-channel calculations (Spherical pot. plus deform. Parameters)
 - Microscopic level densities (HFB parity dependence)
 - Tuning parameters
- Kalman (Bayesian)
 - Selected experiments, e.g. (n,tot), (n,2n), (n, γ)
 - Parameter correlations: $P \equiv \langle \Delta p_l^{(1)} \Delta p_m^{(1)} \rangle$
 - Total error matrix: $E \equiv \langle \Delta p_l^{(1)} \Delta p_m^{(1)} \rangle + \langle \Delta p_l^{(2)} \Delta p_m^{(2)} \rangle$
 - Covariance matrix: $C \equiv S^T ES$
 - cov(n,el) computed: cov(n,tot)-cov(n,abs)

Results for Leads (33 energy-grp 1/E)

NATIONAL

LABORATORY

Brookhaven Science Associates

Results for Leads (33 energy-grp 1/E)

NATIONAL

Brookhaven Science Associates

Results for Leads (comparison)

LABORATO

Brookhaven Science Associates

Conclusions

Neutron cross-section covariances for Leads and ²⁰⁹Bi

- Thermal Region ATLAS (S.F. Mughabghab)
- Resolved Resonance Region ATLAS + Kercen + other criteria
- Fast Neutron Region EMPIRE + Kalman
 - Model calculations + selected experiments

Covariances were generated for AFCI-2.0^β

- (co)variances possible candidate for ENDF/B-VII.1
- Possible improvements
 - Cross-reaction correlations
 - Inclusions of other reaction channels

