Covariance work at LLNL

D. Brown 11/2/2010

Lawrence Livermore National Laboratory

Nuclear data covariance matrices can be huge and unwieldy

• The FULL covariance matrix of an evaluation is way too big to be used:

3 big σ 's: (n,tot), (n,el), (n, γ)	5000 pts. ea.
~ 10 discrete level excitation σ 's: (n,n')	100 pts. ea.
~ 5 threshold σ's: (n,2n), (n,p), (n,3n), etc.	100 pts. ea.
If fissions, have fission σ too	5000 pts. ea.

- Most channels have ~2 outgoing particles (usu. γ & n)
 - Assume isotropic, but each has ~ 10 outgoing E' points
 - So has 10 x (number of points in σ)
- This comes out to ~ 1.5 x 10⁵ points/evaluation (neglecting fission)!
- Note, this neglects cross-isotope correlations:
 - Reaction model, common parameters in modeling
 - Ratio experimental data (e.g. ²³⁹Pu(n,f)/²³⁵U(n,f))

The FULL covariance matrix (for just one evaluation) would require $\sim 10^{10}$ entries: it would be impractical to use the entire thing

Practical (partial) solutions to dimensionality problem; all of these have already been tried by the nuclear data community

Practical (partial) solutions to dimensionality problem; all of these have already been tried by the nuclear data community

Group the covariance
 Lowers resolution

Practical (partial) solutions to dimensionality problem; all of these have already been tried by the nuclear data community

- Group the covariance
 Lowers resolution
- Throw out cross correlations
 - What if my project is sensitive to those correlations?

Practical (partial) solutions to dimensionality problem; all of these have already been tried by the nuclear data commun

- Group the covariance
 Lowers resolution
- Throw out cross correlations
 - What if my project is sensitive to those correlations?
- Guess which subspaces users need, throw out rest
 - What if my project is sensitive to something you threw out?
 - What if my project is not sensitive to something you kept?

Practical (partial) solutions to dimensionality problem; all of these have already been tried by the nuclear data commun

- Group the covariance
 Lowers resolution
- Throw out cross correlations
 - What if my project is sensitive to those correlations?
- Guess which subspaces users need, throw out rest
 - What if my project is sensitive to something you threw out?
 - What if my project is not sensitive to something you kept?
- Compressed formats
 - Lowers precision of entries, can lead to numerical artifacts (e.g. nonpositive eigenvalues)

Practical (partial) solutions to dimensionality problem; all of these have already been tried by the nuclear data commun

- Group the covariance
 Lowers resolution
- Throw out cross correlations
 - What if my project is sensitive to those correlations?
- Guess which subspaces users need, throw out rest
 - What if my project is sensitive to something you threw out?
 - What if my project is not sensitive to something you kept?
- Compressed formats
 - Lowers precision of entries, can lead to numerical artifacts (e.g. nonpositive eigenvalues)
- Double precision -> single precision
 - Lowers precision of entries, for sure leads to numerical artifacts (e.g. non-positive eigenvalues)

• What do I propose to do about it?

- What do I propose to do about it?
 - ... nothing
- I will use the existing covariance data however

LLNL nuclear data processing system supplies Monte Carlo and deterministic transport codes

LLNL nuclear data processing system supplies Monte Carlo and deterministic transport codes

Want probability distributions for metrics based on knowledge of the nuclear data

Want probability distributions for metrics based on knowledge of the nuclear data **Compute metric** User developed for each lib. a-priori script for particular model problem/client code params & covariance Cross sections, Sample nuclear Weight libs. outgoing particle data; create lib. distributions, ... Kiwi handles this Histogram metrics. **Standard UQ Framework** a-posteriori model DAKOTA params, PDF of metric

Status of kiwi rewrite vs. requirements

- **Drive using PSUADE or Dakota or stand-alone**
- **Documented** (in progress)
- □ Not so easy to use (can't be helped it seems)

Generated libraries:

- Make either Monte-Carlo (mcf), deterministic (ndf), or tdf libraries
- ☑ User defined isotope lists so files not humongous

How data varies:

- ☑ Use data covariance (e.g. from ENDF/B-VII)
- ☑ Use data uncertainties
- ☑ Use user-imposed uncertainties
- ☑ Simple interface for all kinds of variation (esp. for cov.)

A sample UQ study on the Jezebel critical assembly

- ICSBEP Handbook case # PU-MET-FAST-001 (NEA/NSC/DOC(95)03, ed. B. Biggs (2009))
- Ball of mostly Pu (%'s by atomic fraction):
 - 92% ²³⁹Pu
 - 3% Ga
 - 5% other Pu
- 1D model using AMTRAN deterministic neutron transport.*

* Clouse, C. J., Parallel Deterministic Neutron Transport with AMR, in Computational Methods in Transport, edited by Graziani, F.R., Springer-Verlag, Pages 499 - 512 (2006).

Jezebel has a "hard" neutron flux, peaking around 3 MeV

What we varied: ²³⁹Pu(n,f) cross section and prompt neutron multiplicity (prompt nubar) in three energy groups

Option:UCRL#

What we varied: ²³⁹Pu(n,f) cross section and prompt neutron multiplicity (prompt nubar) in three energy groups

We used the (n,f) cross section and its covariance from the ENDF/B-VII.0 nuclear data library

- Matrix taken from ENDF/B-VII.0 evaluation
- Given in two energy ranges:
 - Resonance region (E < 100 keV)
 - High energy (E > 100 keV)
- Matrix was not positive definite:
 - Perform eigenvalue decomp.
 - Remove small & negative eigenspaces
- Significant off-diag. correlations

The ENDF/B-VII.0 ²³⁹Pu(n,f) evaluation (used in ENDL2009.0) included beautiful fit to prompt nubar

The ENDF/B-VII.0 ²³⁹Pu(n,f) evaluation (used in ENDL2009.0) included beautiful fit to prompt nubar

We were forced to manufacture our own nubar covariance

- **Uncertainty not given either!**
 - Assume 10% rel. uncertainty: way too big by factor of 5 •
 - Actual uncertainty undoubtedly much smaller, but not given in any modern data library (this • is despite efforts of several groups of evaluators)
- Manufactured by
 - Assume off-diagonal correlation shape: $\exp\left(-\frac{|E_1 E_2|}{\Delta E}\right)$, with $\Delta E = 1 MeV$

How we varied

- Principal Component Analysis (PCA) of covariance matrix is do-able, but not very user friendly
 - Eigenvalues, λ_i, and eigenvectors, u_i, may be easy to convert into samples
 - Explaining shape of sample to users is not

How we varied

- Principal Component Analysis (PCA) of covariance matrix is do-able, but not very user friendly
 - Eigenvalues, λ_i, and eigenvectors, u_i, may be easy to convert into samples
 - Explaining shape of sample to users is not

How we varied

- Principal Component Analysis (PCA) of covariance matrix is do-able, but not very user friendly
 - Eigenvalues, λ_i, and eigenvectors, u_i, may be easy to convert into samples
 - Explaining shape of sample to users is not
- Instead, user requests a variation shape, v_i, then we give them the closest thing in the eigenbasis of the covariance
- Using new variations, perform standard sampling & variation as in PCA

What we found

985 realizations

Strong sensitivity to cross section apparent, especially in lower 2 energy groups.

Weak sensitivity to multiplicity probably due to gross over estimate of uncertainties

What we found

Surprisingly, response of k_{eff} to variations in nubar (which were far overstated) are negligible and consistent with zero.

Response to k_{eff} to variations in cross section are sizeable in first two groups, negligible from 10 MeV onwards (in the last energy group).

What we found

Summary of k_{eff} for Jezebel

	k _{eff}
Experiment	1.000 ± 0.002
Using mean values	1.0006609
Sensitivity matrix approach*	0.9953 ± 0.00024
Monte Carlo approach	1.00069 ± 0.0111
30 Realizations Gaussian fit	

Not a fair comparison: Gila & Leal used ENDF/B-VI library for mean values, took covariance from JENDL-3.3 library. They also varied (n,el) and (n,γ) cross sections. They used the TSUNAMI and SCALE system.

* From Choong-Sup Gila and L.C. Leal, "A Sensitivity and Uncertainty Analysis of keff Values on Fast and Thermal Benchmarks with the Covariance Data," International Conference on Reactor Physics, Nuclear Power: A Sustainable Resource Casino-Kursaal Conference Center, Interlaken, Switzerland, September 14-19, 2008.

distribution