Update of Nuclear Data Efforts at LANL

AFCI Nuclear Physics Working Group

November 4-5, 2010

Morgan C White

XCP-5

Los Alamos National Laboratory

UNCLASSIFIED

Current Measurement & Theory Efforts at LANL

• We are in the midst of a fission revival!

- This should not be surprising, nuclear energy, nuclear weapons, and many other programs have at their heart, nuclear fission
- We have not seen a significant surge in our efforts on this vital topic in a long time

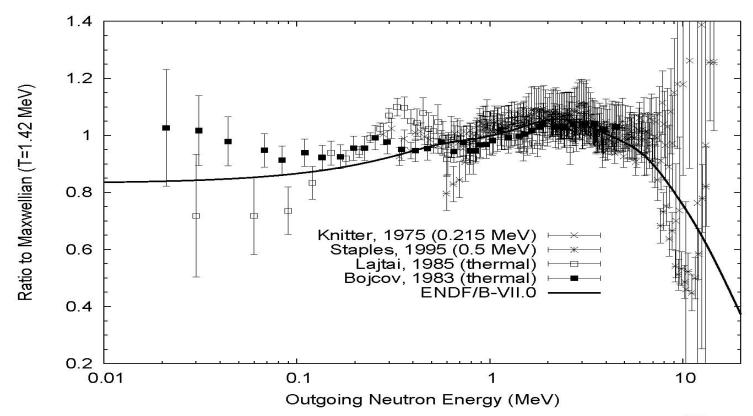
Significantly upgrade our experimental capabilities

- TPC High precision fission cross sections
- Chi-Nu Extended measurement of fission outputs (0.1-12MeV)
- Looking for ideas to measure fission product yields (SPIDER / Gamma)
- Preparing for new critical assembly measurements
- Significant advances in fission theory
 - Several approaches to computing barriers, (n,f), PFNS, other xs, ...
 - Particularly excited at how separate parts are combining
 - Exploring how to better integrate experimental uncertainties

But... we need to make sure other efforts don't fall by the wayside

IAEA TM on Neutron Cross-Section Covariances

From Doug Muir et al. presentation to CSEWG on the need to better understand experimental uncertainties, particularly correlations


"Uncertainties in Experimental Data

- In view of the strong need for input from experimentalists in the evaluation of data covariances, the group reaffirmed the need for nuclear data measurers to pay more attention to the documentation of experimental uncertainties.
- The group noted that this topic is not adequately addressed in the training of nuclear scientists. This fact is compounded by the pressures to publish results in archival journals, and the limitations on the content that can be included in such publications."
- This group is working to make specific recommendations on what this documentation needs to include
 - We need to ensure the appropriate input gets into this process
 - We need to ensure that our future measurement activities follow these recommendations

Prompt Fission Neutron Spectrum

FIGURES

FIGURE 1. Prompt fission neutron spectrum for low-energy (<0.5 MeV) neutron-induced fission of ²³⁹Pu.

Chi-Nu (@ LANSCE WNR)

Measuring the Fission Neutron Emission Distribution

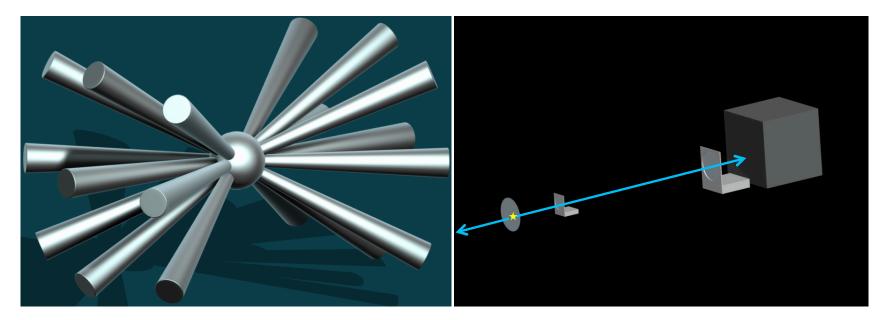
Experimental data for Pu239 will be delivered for low- and high-energies

- Low-energy data (0.1 MeV to MeV) scheduled for June 2013
- High-energy data (MeV to 12 MeV) scheduled for June 2015
 - Potentially available in 2014 given accelerator upgrades plus other good luck
- Attempting to include the evaluation process as part of the data reduction activities

U235 and U238 data will follow but no schedule is currently set

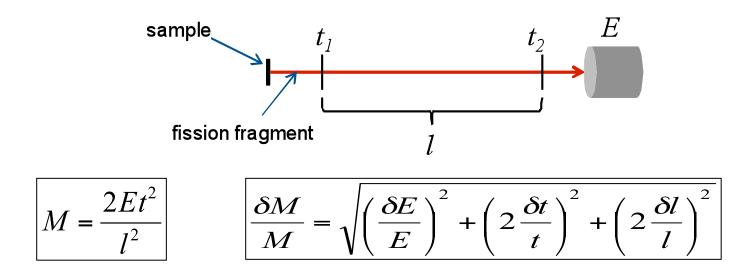
• FY11 activities

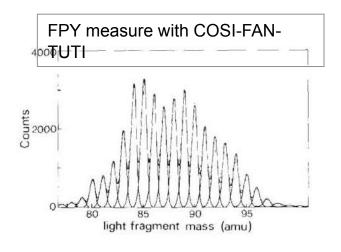
- Out-of-beam detector calibration
- Development of the newly acquired data acquisition system
- Beam line design/construction (new building is planned for WNR to be built this year)


FY12 activities

- Characterization of the new beam flight path
- Installation and in-beam detector calibration
- Preliminary data taken with final (low-energy) data scheduled for FY13

SPectrometer for Ion DEtermination in fission Research (SPIDER)


- Nine pairs of spectrometer arms will provide mass measurements of both fragments
- Target consists of 50-200 μg/cm² actinide sample on a thin (~30 μg/cm2) backing foil
- Multi-channel plate (MCP) detectors provide ~100 ps timing resolution. The fragments pass trough thin carbon film, and electrostatic mirrors bend the electrons towards the MCPs
- Axial ionization chambers have been shown to provide 0.4% energy resolution for the light fragment group, and 0.7% for the heavy group. A segmented readout plane provides δE/E measurements for charge identification


UNCLASSIFIED

Slide 6

The (2E, 2V) method will be used to measure FPYs with about 1 amu resolution

- A 2E, 2V instrument will provide fission product yield measurements
- LANSCE-WNR will provide neutrons in the energy region of interest (0.5 - 30 MeV)

UNCLASSIFIED

HEU Critical Assemblies

Assembly	Exp	RE	Calc	C/E	Sigma Diff		
HEU-MET-FAST-001 1	1.0000	0.0010	0.9998	0.9998	-0.2		
HEU-MET-FAST-001 2	1.0000	0.0010	0.9999	0.9999	-0.1		
HEU-MET-FAST-008	0.9989	0.0016	0.9960	0.9971	-1.8		
HEU-MET-FAST-018	1.0000	0.0014	1.0004	1.0004	0.3		
HEU-MET-FAST-015	0.9997	0.0017	0.9944	0.9947	-3.1		
HEU-MET-FAST-065	0.9985	0.0013	0.9980	0.9995	-0.4		
HEU-MET-FAST-051 14	0.9996	0.0002	0.9988	0.9992	-4		
HEU-MET-FAST-051 15	0.9998	0.0001	0.9981	0.9983	-17		
HEU-MET-FAST-051 16	0.9981	0.0001	0.9965	0.9984	-16		
HEU-MET-FAST-051 17	0.9969	0.0001	0.9955	0.9986	-14		
HEU-MET-FAST-051 18	0.9984	0.0001	0.9943	0.9959	-41		
HEU-MET-FAST-007 1	0.9950	0.0024	0.9932	0.9981	-0.8		
HEU-MET-FAST-007 19	0.9956	0.0015	0.9967	1.0011	0.7		

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

_OS

NATIONAL LABORATORY

Jezebel Schematic and Photo

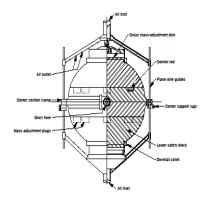
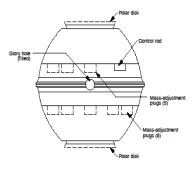
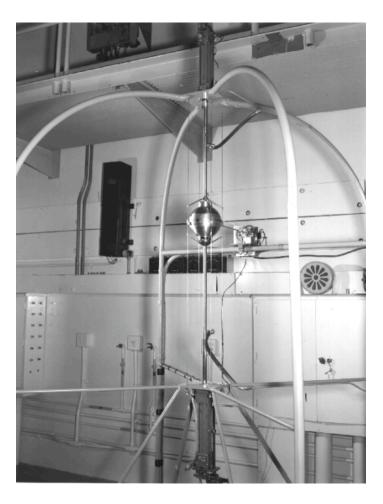
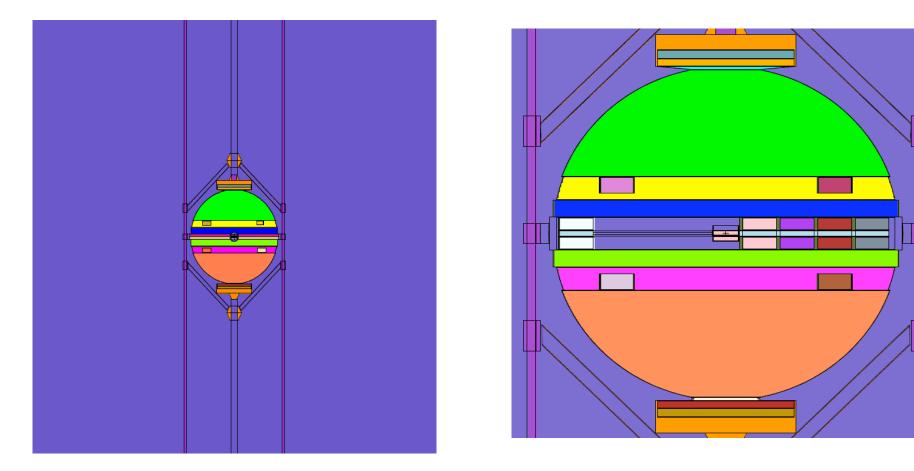




Figure 3. The Active Portion of the Original Jezebel Assembly.



UNCLASSIFIED

Three-Dimensional Model Pictures

UNCLASSIFIED

Detailed Model Configurations

Configuration A

- 13 Pu Buttons
- Control Rod full insertion
- Thin polar discs
- 16.571 kg Pu alloy
- k_{eff} = 1.0001 ± 0.0002

Total uncertainty ± 0.0052

Configuration B

- 8 Pu Buttons
- Control Rod inserted 1.375-inches
- Thick polar discs
- 16.909 kg Pu alloy
- $k_{eff} = 1.0001 \pm 0.0002$

Total uncertainty ± 0.0057

UNCLASSIFIED

Detailed Model Inconsistencies

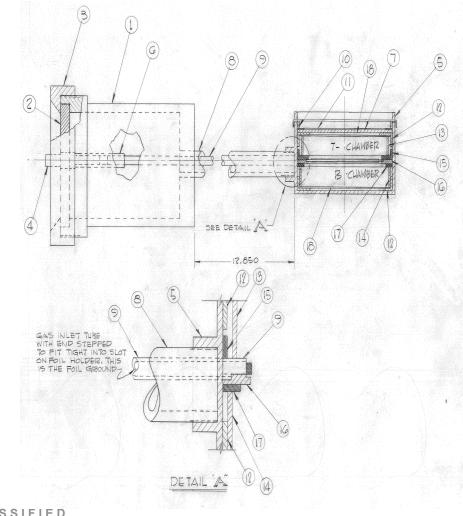
- No Isotopic information or impurities found for Pu buttons
- Configurations A and B could not be located in the Logbooks
 - Configurations near A and B are in the logbooks
 - May be in another logbook

Some of the corrections difficult

- Asphericity
- Air Reflection
- Homogenization

Temperature coefficient of reactivity

- α-phase Pu is a negative effect
- δ-phase Pu is positive
- Measured effect was negative
- Believe the larger parts are a mixture of α and δ -phase
- Normalized isotopic and impurity compositions needed
 - Standard practice when dealing with radio-chemists
 - Radio-chemists report 2-σ results
 - Analysts must ensure all constituents add to exactly 100%



Detailed Model of Grundl Detector

Foils modeled

- Impurities
- Reported Masses
- Enrichments
 - _ ²³⁸U
 - _ ²³⁵U
 - ²³⁷Np
 - ²³⁹Pu

Nominal 4 ATM Ar

UNCLASSIFIED

Results

Fissionable											
Msmt	U28/U25		U23/U25		Np37/U25		Pu49/U25				
Expt	0.2137	0.0108	1.578	0.0171	0.962	0.0166	1.448	0.0200			
Calc Top	5.13E-07	0.0116	3.80E-06	0.0076	2.29E-06	0.0091	3.38E-06	0.0079			
Calc Lower	2.41E-06	0.0075	2.36E-06	0.0075	2.27E-06	0.0075	2.30E-06	0.0076			
Ratio	0.2129	0.0138	1.5962	0.0107	0.9651	0.0118	1.4716	0.0110			
C/E - 1	-0.0036	0.0175	0.0115	0.0201	0.0032	0.0203	0.0163	0.0228			

Questions For Which We Need Help

- Is there a preferred order for marching through the other actinides?
- Are there other measurements which are falling by the wayside?
- How do we integrate new measurements into evaluations?
- How do we integrate experimental and theoretical uncertainties into simulations?
 - And how do we best describe results?
- Can you help motivate the basis for SPIDER? (fission yields)
- What other critical assembly measurements should we consider?
 - How do we collaborate on the design, execution and documentation of these?

