Recent LANL Uncertainty Quantification Activities for FCR&D

P.Talou, T.Kawano, G.M.Hale, S.Holloway, A.C.Kahler, P.G.Young

T-2, Nuclear Physics Group Los Alamos National Laboratory

UNCLASSIFIED

Slide 1

Evaluations & Methodologies

Covariance Evaluations

- Complete new evaluations + UQ for ^{238,240}Pu, ²⁴¹Am (ORNL at low energies)
- ²⁴¹Pu (n,fission)
- New light nuclei R-matrix evaluations for ⁴He, ⁹Be, and ¹⁶O
- Covariance evaluation of PFNS for n(0.5 MeV)+^{238,239,240}Pu
- Systematic study of minor actinides PFNS
- → "AFCI-2.0 Covariance Library: BNL & LANL Report FY2010", M.Herman et al. (BNL) and P.Talou et al. (LANL), Oct. 14, 2010.

UQ Methodologies

- Develop PFNS evaluation and UQ toolkit
- Advanced statistical tools
- Testing covariance matrices

Advanced modeling of PFNS and fission cross section

UNCLASSIFIED

Slide 2

Actinide Evaluations

- n+^{238,240}Pu
 - New evaluations
 - Covariance evaluation performed simultaneously, but retrofitted to ENDF/B-VII.0 files for AFCI-2.0 covariance library
 - Includes PFNS and <v> covariance matrices
- n+²⁴¹Am
 - Covariance evaluation on top of ENDF/B-VII.0 evaluation

UNCLASSIFIED

Slide 3

n+²³⁸Pu Evaluation and UQ

- Modern coupled-channels reaction calculation
- Fission cross section evaluation using experimental data
 - Including recent LANSCE data
- Capture cross section calculated using CoH code
- Covariance evaluation using GNASH/CoH+KALMAN (Bayesian filter)

UNCLASSIFIED

Slide 5

Covariance Evaluation for Am241 Fission

T.Kawano, Oct. 2010

Operated by Los Alamos National Security, LLC for NNSAFCI Nuclear Physics Working Group, Nov. 4, 2010

Am241 Fission Cross Section in Fast Range

Am241 Capture Cross Section

Statistical model calculation

• DANCE experimental data

Benchmark Calculations

LANL reaction rate
measurements in the critical
assemblies

Resonance Range

- LSSF=1 Used
- JENDL-4 Resolved/ unresolved resonance parameters adopted

Operated by Los Alamos National Security, LLC for NNSAFCI Nuclear Physics Working Group, Nov. 4, 2010

Slide 8

²⁴¹Pu (n,fission) Cross Section

- Generalized-Least-Square study of existing experimental data sets
- Recent measurement at LANSCE (F.Tovesson)

Slide 9

Operated by Los Alamos National Security, LLC for NNSAFCI Nuclear Physics Working Group, Nov. 4, 2010

EST.1943

¹⁶O R-matrix Evaluation

- New evaluation by G.M.Hale
- Covariance matrices evaluated for (n,n), (n,α) and <μ>

Correlation Matrix

Prompt Fission Neutron Spectrum n+^{238,239,240}**Pu Covariance Evaluations**

- Initial work on 239Pu
 - "Uncertainty Quantification of Prompt Fission Neutron Spectrum for n(0.5 MeV) +²³⁹Pu", P.Talou et al., Nucl. Sci. Eng. 166, 1-13 (2010).
 - Part of ENDF/B-VII.1β0
 - Methodology similar to cross section UQ → Madland-Nix model + KALMAN

n(0.5 MeV)+²³⁹Pu PFNS (cont'd)

Processed through NJOY in 33 and 590 groups

Verifies the zero-sum rule

EST.1943

Similar work for ^{238,240}Pu

Lack of experimental data

EST.1943

 Use of systematics for model input parameters

PFNS Evaluation Package

- Complete code package to analyze, compute and evaluate prompt fission neutron spectrum and multiplicity
 - Implementation of the Madland-Nix model
 - Model input parameter systematics included
 - Complete module to analyze various experimental data sets
 - Search for optimal model parameters
 - Uncertainty Quantification of spectrum and multiplicity
 - ENDF formatting for easy incorporation in evaluated libraries
- Version 1.0 already released (internally)
- AFCI-NEUP collaboration with A.Prinja, M.Rising, UNM
- First application to suite of plutonium isotopes
- By end of this CY: large suite of actinides studied to replace values in ENDF/B-VII.0

UNCLASSIFIED

Slide 14

Advanced Statistical Tools

- Better evaluation of experimental errors and correlations
 - Work closely with LANSCE scientists measuring fission cross sections (F.Tovesson) and (χ,ν) (R.C.Haight)

Sampling model parameter space

- Beyond linear approximation (1st order KALMAN code)
- Unified Monte Carlo (UMC) proposed by D.Smith

Advanced evaluation tools

- Better ways of checking consistency of experimental data sets (beyond χ^2/N)
- Cross-correlations between experiments?
- Model uncertainties?
- Testing evaluated covariance matrices
 - Propagation of uncertainties / consistency check in benchmarks and transport simulations

UNCLASSIFIED

Slide 15

Advanced Modeling of Prompt Fission Neutrons

- Based on earlier work: S.Lemaire, P.Talou, T.Kawano, M.B.Chadwick and D.G.Madland, Phys. Rev. C72, 024601 (2005); Phys. Rev. C73, 014602 (2006)
- Entirely new code written "FFD"
- P.Talou, T.Kawano, O.Bouland, J.E.Lynn, P.Möller, and M.B.Chadwick, Proc. of the International Conference on Nuclear Data for Science & Technology ND2010, April 26-30, 2010, Jeju Island, Korea (2010). [LA-UR 10-03259]
- AFCI-NEUP Collaboration with Y.Danon, B.Becker, RPI
 - LSDS measurements of fission cross sections and fission fragment yields
 - Use FFD code with input from RPI measurements
 - Sensitivity calculations

Advanced Modeling of Fission Cross Section

- R-matrix approach, based on original work by J.E.Lynn
- Less phenomenology, more physics-based model parameters, better predictive capabilities
- Who:
 - O.Bouland (long-term visit from CEA, France) J.E.Lynn (LANL Consultant) -T.Kawano, P.Möller, P.Talou
 - AFCI-NEUP collaboration with W.Nazarewicz et al., UTK/ORNL

Preliminary Results for n+^{239,241}Pu and n+^{238,240}Pu

Odd target

UNCLASSIFIED

Slide 18

