### Central Reaction Rate Ratios Using a Detailed Model of Jezebel

R. W. Brewer XCP-7 And M. C. White XCP-5 Los Alamos National Laboratory





# Outline

- Purpose
- Original Jezebel CSEWG and ICSBEP
- Detailed Jezebel Models
- Central Reactivity Rate Ratios
  - Details of Grundl Detector
  - Details of Foils
- Results





## Purpose

- Reduce modeling uncertainties associated with Jezebel
- Understand the total uncertainty
  - Modeling
  - Experimental
- Better models for the central reaction rate ratios/foil activation measurements

- Improve the calculated results





# Jezebel Critical Assembly

- WG Pu,
  - 95.2 at% <sup>239</sup>Pu
  - 17.04 kg Pu
  - 15.61 g/cm<sup>3</sup>
  - Radius 6.3849 cm
- First critical in 1954 and operated for about 5 yrs
- Two configurations recommended by Experimentalists







## Jezebel Schematic and Photo



Figure 3. The Active Portion of the Original Jezebel Assembly.









# **Current Benchmark Model**

- One-Dimensional
- Numerous corrections
  - Asphericity
  - Internal Ni & Homogenization
  - Equatorial Band
  - Polar Supports
  - External Ni
  - Framework
  - Building-wall Reflection
  - Air Reflection
  - Trace Impurities
- Elevated Temperatures

EST. 1943 -



#### **Detailed Benchmark Model**

- Currently revising original evaluation by R. D. O'Dell and R. W. Brewer
- Each part is modeled based on as-built drawings and mock-up
  - Linear dimensions
  - Some part masses
- Individual part material properties from internal memos and logbooks
  - Pu part isotopic compositions
  - Impurities
  - Part masses





#### **Three-Dimensional Model Pictures**









# **Detailed Model Configurations**

- Configuration A
  - 13 Pu Buttons
  - Control Rod full insertion
  - Thin polar discs
  - 16.571 kg Pu alloy
  - $k_{eff} = 1.0001 \quad 0.0002$
- Total uncertainty 0.0052

- Configuration B
  - 8 Pu Buttons
  - Control Rod inserted
    1.375-inches
  - Thick polar discs
  - 16.909 kg Pu alloy
  - $k_{eff} = 1.0001 \quad 0.0002$
- Total uncertainty 0.0057





# **Detailed Model Inconsistencies**

- No Isotopic information or impurities found for Pu buttons
- Configurations A and B could not be located in the Logbooks
  - Configurations near A and B are in the logbooks
  - May be in another logbook
- Some of the corrections difficult
  - Asphericity
  - Air Reflection
  - Homogenization
- Temperature coefficient of reactivity
  - α-phase Pu is a negative effect
  - δ-phase Pu is positive
  - Measured effect was negative
  - Believe the larger parts are a mixture of  $\alpha$  and  $\delta$ -phase
- Normalized isotopic and impurity compositions needed
  - Standard practice when dealing with radio-chemists
  - Radio-chemists report 2-σ results
  - Analysts must ensure all constituents add to exactly 100%





## **Detailed Model of Grundl Detector**

- Foils modeled
  - Impurities
  - Reported Masses
  - Enrichments
    - <sup>238</sup>U
    - 235U
    - <sup>237</sup>Np
    - <sup>239</sup>Pu
    - <sup>63</sup>Cu
- Nominal 4 ATM Ar







## Experimental Central Reaction Rate Ratios

- F28/F25
- F23/F25
- F37/F25
- F49/F25
- V/F25
- <sup>55</sup>Mn/F25
- <sup>63</sup>Cu/F25
- <sup>93</sup>Nb/F25
- <sup>197</sup>Au/F25



- 0.2137 1.08%
- 1.578 1.71%
- 0.9620 1.66%
- 1.448 2.00%
- 0.0023 13.04%
- 0.0024 12.50%
- 0.010 6.00%
- 0.023 8.70%
- 0.083 2.41%





# **Detailed Jezebel Model**

- Model changed often
  - <sup>197</sup>Au/F25 Model
    - 1 each 1/2-inch glory hole filler piece
    - 2 thin polar discs
    - 13 buttons
    - Control rod inserted 1.975 to 1.715 inches
    - Temperature 34.0 to 36.9 °C
- In Nov 1958 many Jezebel parts were replaced resulting in a net reduction of 73.69 g Pu





## Results

| Fissionable     |          |        |          |        |          |        |          |        |           |        |
|-----------------|----------|--------|----------|--------|----------|--------|----------|--------|-----------|--------|
| Msmt            | U28/U25  |        | U23/U25  |        | Np37/U25 |        | Pu49/U25 |        |           |        |
| Expt            | 0.2137   | 0.0108 | 1.578    | 0.0171 | 0.962    | 0.0166 | 1.448    | 0.0200 |           |        |
| Calc Top        | 5.13E-07 | 0.0116 | 3.80E-06 | 0.0076 | 2.29E-06 | 0.0091 | 3.38E-06 | 0.0079 |           |        |
| Calc<br>Lower   | 2.41E-06 | 0.0075 | 2.36E-06 | 0.0075 | 2.27E-06 | 0.0075 | 2.30E-06 | 0.0076 |           |        |
| Ratio           | 0.2129   | 0.0138 | 1.5962   | 0.0107 | 0.9651   | 0.0118 | 1.4716   | 0.0110 |           |        |
| C/E - 1         | -0.0036  | 0.0175 | 0.0115   | 0.0201 | 0.0032   | 0.0203 | 0.0163   | 0.0228 |           |        |
| Non-Fissionable |          |        |          |        |          |        |          |        |           |        |
| Msmt            | V/U-25   |        | Mn55/U25 |        | Cu/U25   |        | Nb93/U25 |        | Au197/U25 |        |
| Expt            | 0.0023   | 0.1304 | 0.0024   | 0.1250 | 0.0100   | 0.0600 | 0.023    | 0.0870 | 0.083     | 0.0241 |
| Calc Top        | 2.54E-09 | 0.0189 | 3.33E-09 | 0.0162 | 1.88E-08 | 0.0096 | 2.66E-08 | 0.0233 | 7.33E-08  | 0.0107 |
| Calc<br>Lower   | 2.28E-06 | 0.0075 | 2.42E-06 | 0.0075 | 2.42E-06 | 0.0075 | 2.40E-06 | 0.0075 | 2.40E-06  | 0.0075 |
| Ratio           | 0.0011   | 0.0203 | 0.0014   | 0.0179 | 0.0078   | 0.0122 | 0.0111   | 0.0245 | 0.0305    | 0.0131 |
| C/E - 1         | -0.5151  | 0.1320 | -0.427   | 0.1263 | -0.223   | 0.0612 | -0.518   | 0.0904 | -0.632    | 0.0274 |
| SAlamos         |          |        |          |        |          |        |          |        |           |        |

NATIONAL LABORATORY

EST.1943



## **Bonner Sphere Measurements**

- Lithium-Iodide Bonner spheres msmts performed in July of 1959
- Used to measure source strength
  - Lil crystal placed 41 cm from Assy
  - 13-ft off concrete floor
  - five Bonner spheres, 2", 3", 5", 8" and 12" diameter
- Source strength  $3x10^7$  n/sec,  $\frac{1}{2}$  of 1%
- Counting time 400 sec
- Research how this was used to derive experimental results





# Conclusion

- PU-MET-FAST-001 will be revised to include the detailed model
- Detailed Model has a higher total uncertainty
  - Before passing both G. E. Hansen and H. C. Paxton said they believed that metal assemblies weren't known to better than 0.0050 in k<sub>eff</sub>
  - This analysis tends to support their opinion
- Fissionable Central Reaction Rates agree well with calculation
- Non-fissionable Central Reaction Rates don't agree
  within uncertainties
  - Need more investigation
  - Suspect an unknown uncertainty in the model



