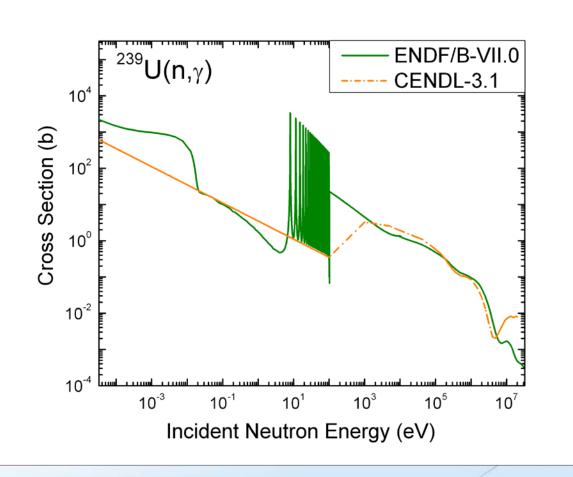
ENDF libraries data testing

B. Pritychenko, S.F. Mughabghab National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY 11973-5000, USA

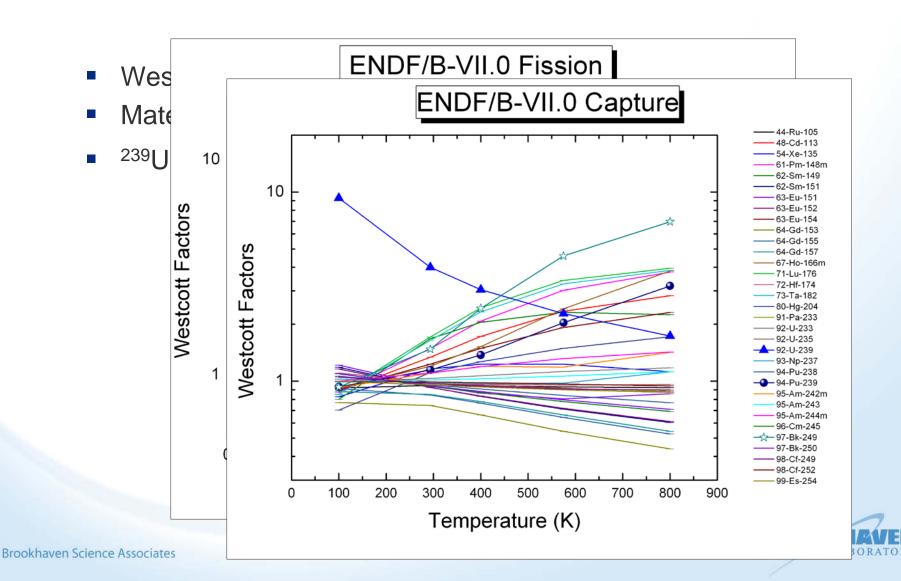
a passion for discovery

Introduction

- Complete approach:
 - Five evaluated libraries: JENDL-4.0, CENDL-3.1, ROSFOND 2010, ENDF/B-VII.0 and JEFF-3.1
 - 715 materials in total
 - Several integral quantities: RI, Thermal and Maxwellian cross sections, Westcott factors
 - Multiple processing temperatures: 0 800 K
 - Comparisons with Atlas of Neutron Resonances, Neutron cross section standards, KaDONiS, ...
 - Low-Fidelity uncertainties for nuclear astrophysics



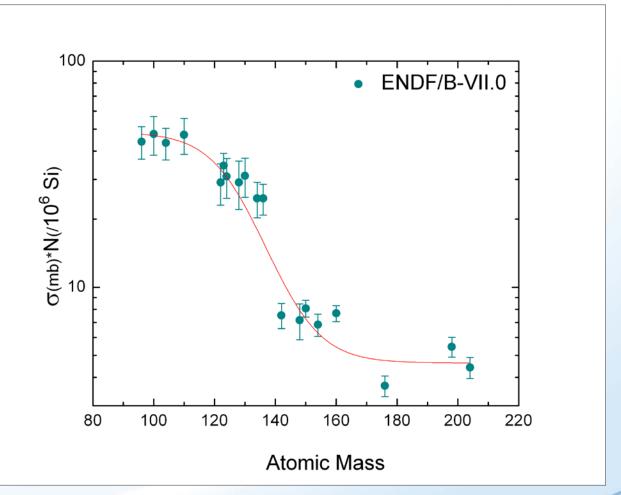
Westcott Factors


Westcott Factors were applied for capture and fission reactions.

to test deviation

²³⁹U evaluation

Temperature Westcott Factors


Preliminary Thermal CS & RI Issues

- ENDF/B-VII.0 Fission CS potential problems: ²³²Pa, ^{237,238}U and ²⁴⁸Cm
- ENDF/B-VII.0 Capture CS potential problems: ¹⁷O, ⁴³Ca, ⁵⁴Cr, ^{74,75}As, ⁸⁶Kr, ⁸⁸Sr, ⁹³Zr, ¹²²Te, ^{146,147}Pm, ²⁰¹Hg, ²⁴²Am, ²⁵³Cf
- Fission RI: ²²⁹Th, ^{232,233}Pa, ^{232,234,238}U, ²³⁷Np, ^{240,242}Pu, ^{242,243,247,248}Cm, ²⁵³Cf
- Capture RI: ¹³C, ^{16,17,18}O, ²⁵Mg, ³⁰Si, ^{33,36}S, ^{35,36}Cl, ⁴⁰Ar, ^{43,44,46}Ca, ⁴⁹Ti, ^{50,53,54}Cr, ⁵⁴Mn, ^{58m}Co, ⁶⁴Ni, ^{72,74}Ge, ⁸²Se, ⁸⁵Kr, ⁸⁸Sr, ⁹⁴Zr, ^{106,110}Pd, ^{110m}Ag, ¹⁰⁶Cd, ^{118,119}Sn, ¹³⁴Xe, ¹³⁵Cs, ¹⁴⁰Ba, ^{138,140}Ce, ^{142,146,147}Nd, ^{148m}Pm, ¹⁴⁴Sm, ^{152,154,155}Eu, ^{152,160}Gd, ^{159,160}Tb, ¹⁵⁸Dy, ^{166m}Ho, ¹⁷¹Tm, ¹⁶⁹Yb, ^{174,176}Hf, ^{190,192}Os, ¹⁹²Ir, ^{190,192,196}Pt, ¹⁹⁹Au, ^{200,204}Hg, ²⁰⁴Tl, ²⁰⁸Pb, ^{210m}Bi, ^{229,233}Th, ²³⁷U, ^{236,244,245}Pu, ²⁵³Cf and ²⁵¹Es

Low-Fidelity Uncertainties

- We unders
- We unders main goal
- However, from ¹H to
- This is set application

Conclusion & Outlook

- Thermal CS, RI, Westcott Factors, MACS have been calculated for five ENDF libraries, several temperatures
- ENDF/B-VII.0 integral values have been calculated for 575F ~ 575K (PWR temperature)
- Low-Fidelity project results have been applied for nuclear astrophysics
- Several deficiencies have been identified
- Current results will be extensively analyzed, compared with all available benchmarks to understand the origin of deficiencies
- Many thanks to M. Herman, M. Pigni, C. Mattoon and V. Zerkin

