

Bechtel Marine Propulsion Corporation Knolls Atomic Power Laboratory P. O. Box 1072 Schenectady, NY 12301-1072

MCNP Analysis of Various Cross Section Source Data on the ICT-003 (TRIGA) Benchmark

TH Trumbull

Cross Section Evaluation Working Group Meeting November 1 - 3, 2010 Santa Fe, NM

Introduction

- A. Trkov reported a large change in the ICT-003 (Slovenia TRIGA) Benchmark when using the ENDF/B-VII.0 cross section data set (June 2010)
 - Approximately 500 pcm increase in reactivity was observed.
 - This reactivity increase was largely eliminated if JENDL-4.0 ZR91 was substituted into the data set.
- KAPL performed an analysis of ICT-003 using MCNP coupled with various sets of cross section data.
 - Isotopic analyses and cross section comparisons performed to isolate the reactivity effects of the various data sets.

Analysis Approach - I

- Geometry
 - MCNP Model copied directly from ICSBEP Handbook (2009) for IEU-COMP-THERM-003, Core 132.
- Nuclear Data
 - ENDF/B-VI.0 and ENDF/B-VI.8 libraries taken from MCNP CD
 - endf60
 - endf66, actia, actib
 - ENDF/B-VII.0 libraries generated at KAPL
 - All materials Doppler broadened to 293.6 K.
 - Moderators also generated
 - H-H2O, C-GRAPH, H-ZRH, ZR-ZRH
 - NJOY99.259
 - Probability tables using PURR for all materials with URR data.
 - 0.1% RECONR/BROADR tolerances.

Analysis Approach - II

- Material substitutions
 - Using ENDF/B-VII.0 as a base, substitute various versions of materials and record the effects.
 - Change in eigenvalue, neutron balances
- Cross Section Plotting
 - Examine differences in pointwise cross section plots
- Cross Section Modifications
 - Modify resonance parameters to change the cross section.
 - Substitute modified material in the problem and examine effects on reactivity and neutron balances.

Results - I

- Perform some initial runs to recreate Trkov/Kahler results and establish baseline:
 - ENDF/B-VI.0, ENDF/B-VI.8, ENDF/B-VII.0 and ENDF/B-VII.0 + JENDL-4.0 Zr-91.
- Kahler (Email to Lubitz/Trumbull August 2010):

	•	J /
•	ENDF/B-VI.0:	0.99937(29)
•	ENDF/B-VI.8 (Iso. Zr.):	1.00031(28)
	ENDF/B-VII.0 (Iso. Zr):	1.00596(28)

- A. Trkov (June 2010 miniCSEWG):
 - ENDF/B-VII.0: 1.00610
 - ENDF/B-VII.0 + JENDL-4.0 Zr-91: 1.00094
- KAPL (Trumbull MCNP runs, October 2010):
 - ENDF/B-VI.0: 0.99940(28)
 - ENDF/B-VI.8 (Iso. Zr.): 0.99960(28)
 - ENDF/B-VII.0 (Iso. Zr): 1.00606(28)
 - ENDF/B-VII.0 + JENDL-4.0 Zr-91: 1.00051(29)
- ICSBEP Benchmark value
 - ICT-003, Core 132 1.0006(56)

KAPL reproduced ENDF/B-VII.0 reactivity bias and reduction in reactivity from JENDL-4 Zr-91.

Nov. 1-3, 2010

Results - II

MCNP5 Neutron capture fraction comparisons for: ENDF/B-VI.0, ENDF/B-VI.8, ENDF/B-VII.0, and ENDF/B-VII.0 + JENDL-4.0 Zr-91 MCNP Runs.

Wgt. Loss From Capture

Nov. 1-3, 2010

ENDF68-60 ENDF70-60 ENDF70-ENDF70(JENDL40 Zr91)

Results – III

Moderator Substitutions:

Job Name	<i>k</i> -eff(95%CI)	∆ <i>k</i> -eff(95%Cl)	Comments
lct3e7	1.00606(28)		Base Case ENDF/B-VII.0 (Processed at KAPL)
lct3e7a	1.00564(28)	-0.00042(40)	ENDF/B-VI.3 H-H2O (SAB2002 library shipped with MCNP5)
lct3e7b	1.00413(28)	-0.00193(40)	ENDF/B-VI.3 H-ZRH (SAB2002 library shipped with MCNP5)
lct3e7c	1.00371(28)	-0.00235(40)	ENDF/B-VI.3 H-ZRH and ZR-ZRH (SAB2002 library shipped with MCNP5)
lct3e7d	1.00557(28)	-0.00049(40)	ENDF/B-VI.3 Graphite (SAB2002 library shipped with MCNP5)

- -235 pcm effect from swapping ENDF/B-VI.3 H-ZRH and ZR-ZRH for ENDF/B-VII.0 H-ZRH & ZR-ZRH.
- 2. H-ZRH & ZR-ZRH are contributors, but not the major cause of the reactivity bias.

Results – IV

Zirconium isotope substitutions for fast cross sections:

Job Name	<i>k</i> -eff(95%CI)	∆ <i>k</i> -eff(95%Cl)	Comments				
lct3e7	1.00606(28)		Base Case ENDF/B-VII.0 (Processed at KAPL)				
lct3e7e	1.00598(28)	-0.00008(40)	ENDF/B-VI.8 ZR90 (endf66b library shipped with MCNP5)				
lct3e7f	1.00180(28)	-0.00426(40)	ENDF/B-VI.8 ZR91(endf66b library shipped with MCNP5)				
lct3e7g	1.00626(28)	0.00020(40)	ENDF/B-VI.8 ZR92(endf66b library shipped with MCNP5)				
lct3e7h	1.00564(28)	-0.00042(41)	ENDF/B-VI.8 ZR94(endf66b library shipped with MCNP5)				
lct3e7i	1.00494(28)	-0.00112(41)	ENDF/B-VI.8 ZR96(endf66b library shipped with MCNP5)				
Ict3e7o	1.00051(29)	-0.00555(41)	JENDL-4.0 ZR91 (processed at KAPL)				

- 1. -426 pcm effect from swapping ENDF/B-VI.8 ZR91 for ENDF/B-VII.0 ZR91.
- 2. -555 pcm effect from swapping in JENDL-4.0 ZR91 for ENDF/B-VII.0 ZR91.
- 3. The ENDF/B-VII.0 ZR91 constitutes the majority of the effect in the increased reactivity.

RI's and 2200 m/s Comparisons - I

													Abundance	
		2200 m/s					Abundance	Abundance			2200 m/s		Weighted	Abundance
Source	Material	Capture	Unc.	Capture RI	Unc.	Abundance	Weighted Capture	Weighted RI	Source	Material	Capture	Capture RI	Capture	Weighted RI
Mughabghab, 1981	ZR-Nat	0.1850	0.0030	0.9500	0.1500				ENDF/B-VI	ZR-Nat	0.1860	0.9650	-	
	ZR90	0.0110	0.0050	0.1400		0.5145	0.0057	0.0720	,	7R90	0.0112	0.2151	0.0058	0.1107
	ZR91	1.2400	0.2500	5.2000	0.7000	0.1132	0.1404	0.5886		ZR91	1 1867	4 9408	0 1343	0 5593
	ZR92	0.2200	0.0600	0.6300		0.1719	0.0378	0.1083		7002	0.2104	0.6742	0.1345	0.1150
	ZR94	0.0499	0.0024	0.2300	0.0100	0.1728	0.0086	0.0397		2032	0.2194	0.0742	0.0377	0.1139
	ZR96	0.0229	0.0010	5.3000	0.3000	0.0276	0.0006	0.1463		ZR94	0.0491	0.3214	0.0085	0.0555
					Totals:	1.0000	0.1931	0.9550		ZR96	0.0232	5.6243	0.0006	0.1552
Mughabghab, 2006	ZR-Nat	0.1850	0.0030	1.1000	0.1500				ENDF/B-VII.0	ZR-Nat	0.1821	1.1050		
	ZR90	0.0770	0.0160	0.1700	0.0200	0.5145	0.0396	0.0875		ZR90	0.0779	0.2258	0.0401	0.1162
	ZR91	0.8300	0.0800	5.7600	0.4000	0.1122	0.0931	0.6463		ZR91	0.8324	5.9054	0.0934	0.6626
	ZR92	0.2600	0.0800	0.6400		0.1715	0.0446	0.1098		ZR92	0.2292	0.7221	0.0393	0.1238
	ZR94	0.0494	0.0017	0.2650	0.0150	0.1738	0.0086	0.0461		ZR94	0.0499	0.3320	0.0087	0.0577
	ZR96	0.0229	0.0010	5.1500	0.2600	0.0280	0.0006	0.1442		7R96	0.0228	5 1697	0.0006	0 1448
					Totals:	1.0000	0.1866	1.0338		Enso	0.0220	5.1057	0.0000	0.1110
									JENDL-4.0	ZR-Nat	0.1956	1.0347		
										ZR90	0.0107	0.2001	0.0055	0.1030
										ZR91	1.2609	5.7530	0.1415	0.6455
										ZR92	0.2292	0.6751	0.0393	0.1158
										ZR94	0.0507	0.2982	0.0088	0.0518
										ZR96	0.0203	4.2376	0.0006	0.1187

RI's and 2200 m/s Comparisons - II

ZR91 Cross Section Comparisons – RI's and 2200 m/s values

	Disappearance					
ZR91	2200 m/s	0.5 eV Res. Int.				
ENDF/B-VI.8	1.18670	4.94080				
ENDF/B-VII.0	0.83236	5.90540				
JENDL-4.0	1.26090	5.75300				
ENDF/B-VII.0(mod)	1.21170	6.06660				

ENDF/B-VII.0(mod)

- Increase bound-level Γγ values to bring thermal capture cross section back to JENDL-4.0 & ENDF/B-VI.8 values.
 - A 60% increase in Γγ for both negative-energy resonances gets close.
 - *k*-eff using ENDF/B-VII.0(mod) is 1.00156(29).
 - Thermal capture still needs to increase a bit.

ZR91 Cross Section Comparisons – Thermal pointwise values

Slide 12

Summary & Recommendations

- The observed increase in reactivity for the TRIGA (ICT003) benchmark is due to a combination of effects
 - ZR91 thermal cross section accounts for the majority of the effect.
 - Thermal cross section has been lowered compared to ENDF/B-VI.8 and JENDL-4.0.
 - New H-ZRH based on Mattes evaluation accounts for roughly the balance.
- Additional analysis of all the ENDF/B-VII.0 Zr isotopes is warranted.
 - ZR91 is a key player, but ZR96 showed a 112 pcm effect, as well.
 - JENDL-4.0 Zr isotopes should also be considered.

Nov. 1-3, 2010