ORNL Evaluations Submitted for ENDF/B-VII.1

L. Leal, H. Derrien, K. Guber, G. Arbanas, D. Wiarda, R.Q. Wright, and M. Dunn

Nuclear Data & Criticality Safety Group

Oak Ridge National Laboratory

CSEWG, Nov 1-5, 2010

Candidate Evaluations for ENDF/B-VII.1

- ➢ ⁵⁰Cr, ⁵²Cr ⁵³Cr, and ⁵⁴Cr
- ➢ ⁵⁸Ni and ⁶⁰Ni
- ⁴⁶Ti, ⁴⁷Ti, ⁴⁸Ti, ⁴⁹Ti, and ⁵⁰Ti
- ➢ ²³⁹Pu
- ➢ ²⁴⁰Pu
- Brief comments about additional ORNL evaluations:
 - ➢ ⁵⁵Mn, ³⁵CI, ³⁷CI, ³⁹K, ⁴¹K, ¹⁹F, ¹⁸⁰W, ¹⁸²W, ¹⁸³W, ¹⁸⁴W, ¹⁸⁶W
 - ➢ ²³³U, ²³⁵U, ²³⁸U
 - Hf-isotope evaluations (RQ Wright)
- SiO₂ thermal evaluation NCSU-ORNL—presentation by Jesse Holmes (NCSU)

50,52,53,54Cr Resonance Evaluation at ORNL

Nuclear Data & Criticality Safety Group

Oak Ridge National Laboratory

CSEWG, Nov 1-5, 2010

Computer Code SAMMY

- •Used for analysis of neutron, charged-particle crosssection data.
- •Uses Bayes' method (generalized least squares) to find parameter values.
- •Uses R-matrix theory, Reich-Moore approximation (default) or multi- or single-level Breit-Wigner theory.
- •Generates covariance and sensitivity parameters for resonance region.

Cr isotope evaluation

- Transmission and capture cross section measurements done at ORELA for ⁵³Cr and natural Cr for energy below 500 keV (Guber);
- Early high resolution transmission measurements done by Harvey at ORELA above 100 keV for all Cr isotopes;
- Evaluation performed with SAMMY;
- Resolved resonance parameters determined for all Cr isotopes;

Cr isotope evaluation

Energy Range for ⁵⁰Cr Resolved (OLD): $10^{-5} \text{ eV} - 600 \text{ keV}$ Resolved (ORNL): $10^{-5} \text{ eV} - 783 \text{ keV}$ Energy Range for ⁵²Cr Resolved (OLD): $10^{-5} \text{ eV} - 1.2 \text{ MeV}$ Resolved (ORNL): $10^{-5} \text{ eV} - 1.43 \text{ MeV}$

Cr isotope evaluation

Energy Range for ⁵³Cr Resolved (OLD): $10^{-5} \text{ eV} - 245 \text{ keV}$ Resolved (ORNL): $10^{-5} \text{ eV} - 564 \text{ keV}$ Energy Range for ⁵⁴Cr Resolved (OLD): $10^{-5} \text{ eV} - 750 \text{ keV}$

Resolved (ORNL): $10^{-5} \text{ eV} - 834 \text{ keV}$

⁵²Cr thermal cross section compared to the values listed in the Atlas of Neutron Resonances

Cross Section	ORNL		Atlas
	Resonance	Direct	
Capture	0.75+/-0.02	0.82	0.86+/-0.02
Total	3.82+/-0.01	3.93	3.82+/-0.03
Scattering	3.07+/-0.07	-	2.96+/-0.02

⁵²Cr uncertainty in the energy group 0.0253 eV - 0.3 eV calculated with covariance data

Cross Section	Average value and uncertainty	
Capture	17.32+/-0.48 (2.8%)	
Total	26.07+/-0.51 (2.0%)	
Scattering	7.89+/-0.28 (4.7%)	

⁵³Cr thermal cross section compared to the values listed in the Atlas of Neutron Resonances

Cross Section	ORNL		Atlas
	Resonance	Direct	
Capture	18.09+/-0.42	18.41	18.60+/-0.60
Total	26.07+/-0.51	26.39	26.38+/-0.62
Scattering	7.98+/-0.28	-	7.78+/-0.20

⁵³Cr uncertainty in the energy group 0.0253 eV -0.3 eV calculated with covariance data

Cross Section	Average value and uncertainty	
Capture	0.72+/-0.02 (2.8%)	
Total	3.79+/-0.11 (2.9%)	
Scattering	3.07+/-0.08 (2.6%)	

^{58,60}Ni Resonance Evaluations at ORNL

Nuclear Data Group

Oak Ridge National Laboratory

INTRODUCTION

- **PREVIOUS EVALUATION by C. M. Perey et al., for ENDF/B-V, VI**
 - not modified for B-VII-0
 - no COVARIANCE DATA available
 - ⁵⁸Ni thermal to 800 keV
 - ⁶⁰Ni thermal to 450 keV
- HIGH RESOLUTION NEUTRON TRANSMISSION at GELINA
 - Brusegan, 1994
- NEW CAPTURE CROSS SECTION MEASUREMENT at ORELA Guber, 2008
- RE-EVALUATION NEEDED by UPDATING THE DATA BASE
- **RPCM and CSCM CALCULATION**

EXPERIMENTAL DATA BASE

- OLD ORELA TRANSMISSION DATA by Harvey, Larson, Perey
 - ⁵⁸Ni Flight path 78 m, Sample 0.0764 at/b Low Energy
 - ⁵⁸Ni Flight path 201 m, Sample 0.172 at/b High Energy
 - 60 Ni Flight path 80 m, Sample 0.029 and 0.084 at/b E < 200 keV
 - 60 Ni Flight path 80 m, Sample 0.0744 at/b E > 200keV

EXPERIMENTAL DATA BASE

- **GELINA TRANSMISSION DATA by Brusegan et al.**
 - ⁵⁸Ni Flight path 388 m Sample 0.044 at/b
 - ⁶⁰Ni Flight path 388 m Sample 0.0744 at/b
- ORELA CAPTURE DATA by Guber
 - ⁵⁸Ni Flight path 40 m Samples 0.360 at/b
 - ⁶⁰Ni Flight path 40 m Samples 0.364 at/b

• Resonance Parameters

	ENDF/B.VII.0	ORNL	
	(keV)	(keV)	
⁵⁸ Ni	10 ⁻² – 812.0	10 ⁻² – 812.0	
⁶⁰ Ni	10 ⁻² – 450.0	10 ⁻² – 812.0	

RESULTS

⁵⁸Ni Evaluation

- 487 resonances from thermal to 812 keV
- 61 s-wave; 204 p-wave; 222 d-wave
- Average spacing for s-wave: $D_0 = 12.65 \pm 0.70 \text{ keV}$
- Neutron Strength Function from fit to PT distribution:
- $-S_0 = 3.38 \pm 0.61 \times 10^{-4}$
- S₁ = 0.48 ± 0.08 × 10⁻⁴
- S₂ = 2.27 ± 0.30 × 10⁻⁴
- Thermal Capture : 4.27 ± 0.15 b compared to the ENDF/B-VII 4.62 b
- Capture Integral: 2.095 ± 0.07 b compared to the ENDF 2.20 b

RESULTS

⁶⁰Ni Evaluation

- Extended from 450 keV (ENDF/B-VII) to 812 keV Taking advantage of Brusegan very high resolution transmission
- 458 resonances from thermal to 812 keV
- 61 s-wave; 236 p-wave; 161 d-wave
- Average spacing for s-wave: $D_0 = 11.94 \pm 0.66 \text{ keV}$
- Neutron Strength Function from fit to PT distribution:
- $S_0 = 2.64 \pm 0.64 \times 10^{-4}$
- S₁ = 0.68 ± 0.09 × 10⁻⁴
- S₂ = 0.83 ± 0.20 × 10⁻⁴
- Thermal Capture : 2.40 ± 0.06 b compared to the ENDF/B-VII 2.92 b
- Capture Integral: 1.259 ± 0.032 b compared to the ENDF 1.394 b

^{46,47,48,49,50}Ti Resonance Parameters and Covariance Evaluation

Nuclear Data & Criticality Safety Group

Oak Ridge National Laboratory

Resonance Parameter and Covariance Evaluation for ^{46,47,49,50}Ti

• Resolved resonance parameters were converted from MLBW into the RM representation. The resonances were checked against the resonance parameters given in the Atlas of Neutron Resonances.

• For Ti-46 a resonance at 55.67 keV with j=1/2 (l=1) was repeated. According to the Atlas it should be at the energy 56.66 with Γ_t =0.48 eV, Γ_n =0.1 eV and Γ_γ =0.38.

• Thermal cross section and resonance integral are unchanged.

Covariance Data:

•Resolved resonance covariance data were generated with the SAMMY for ^{46,47,49,50}Ti.

•SAMMY was run with the option of generating resonance-covariance retroactively using the "propagated uncertainty parameter" option to include systematic data uncertainties.

Resonance Parameter and Covariance Evaluation for ⁴⁸Ti

♦ Capture (40-meter) and transmission (80-meter) measurements for enriched ⁴⁸Ti and natural titanium done at ORELA from 10 eV to 500 KeV;

• Evaluation performed with SAMMY;

♦ Resolved resonance parameters determined from 10⁻⁵ eV to 400 keV;

Evaluated Resonance parameter covariance;

Thermal cross section and resonance integral and uncertainties well reproduced;

⁴⁸Ti thermal cross section compared to the values listed in the Atlas of Neutron Resonances

Cross Section	ORNL	Atlas	
	Resonance and Direct		
Capture	8.32 +/- 0.23	8.32 +/- 0.16	
Total	12.35 +/- 0.30	12.42 +/- 0.25	
Scattering	4.03 +/- 0.17	4.10 +/- 0.20	
RI	3.78 +/- 0.17	3.90 +/- 0.25	

⁴⁸Ti Cross Sections Experimental and SAMMY

⁴⁸Ti Cross Sections Experimental and SAMMY

for the Department of Energy

National Laborator

²³⁹Pu Resonance Evaluation at ORNL

Nuclear Data Group

Oak Ridge National Laboratory

Motivation for a New Evaluation

- Existing resonance evaluation is divided into three disjoint resonance parameter set as 1.0×10⁻⁵ eV to 1 keV, 1 keV to 2 keV, 2 keV to 2.5 keV;
- Cross section mismatch at the energy boundaries;
- Not easy to generate uncertainty for the whole energy region (zero correlation);
- Solve long standing problem for thermal benchmark experiments

EXPERIMENTAL DATA

Reference	Energy Range	Facility	Measurement
	(eV)		
Bollinger et al. (1956)	0.01 - 1.0		Total Cross Section
Gwin et al. (1971)	0.01 - 0.5	ORELA	Fission and Absorption at 25.6 m
Gwin et al. (1976)	1.0 - 100.0	ORELA	Fission and Absorption at 40.0 m
Gwin et al. (1984)	0.01 - 20.0	ORELA	Fission at 8 m
Weston et al. (1984)	9.0 - 2500.0	ORELA	Fission at 18.9 m
Weston et al. (1988)	100.0 - 2500.0	ORELA	Fission at 86 m
Weston et al. (1993)	0.02 - 40.0	ORELA	Fission at 18.9 m
Wagemans et al. (1988)	0.002 - 20.0	GELINA	Fission at 8 m
Wagemans et al. (1993)	0.01 - 1000.0	GELINA	Fission at 8 m
Harvey et al. (1985)	0.7 – 30.0	ORELA	Transmission at 18 m
Harvey et al. (1985)	30.0 - 2500.0	ORELA	Transmission at 80 m

Issues with ²³⁹Pu Evaluation

- Results of plutonium solution calculations indicate no improvement using ORNL evaluation. Longstanding problem persists!!
- In some case the good results from previous ²³⁹Pu evaluation deteriorate
- Review of the ²³⁹Pu is underway.

ORNL, LANL and CEA

²⁴⁰Pu Resonance Evaluation at ORNL

Nuclear Data Group

Oak Ridge National Laboratory

²⁴⁰Pu Assessment

- Most recent resonance evaluation is by Derrien and Bouland—adopted in JEFF 3.1 and JENDL-3.3 up to 40 keV
- ENDF/B-VII.0 resonance evaluation is not latest evaluation—no covariance data in ENDF evaluation
- SAMMY re-analysis of measured data performed with "new" ORELA data—provide improved resonance analysis with covariance data to complement high-energy LANL high-energy evaluation
- Experimental data to support re-evaluation effort
 - "New" data include ORELA neutron transmission measurements by Harvey and Gwin (1988)—recently discovered in ORELA archives—sample thickness: 0.0723 at/b
 - Transmission data by Kolar et al for two different sample thicknesses: 0.00166 at/b and 0.00466 at/b
 - Experimental fission data not included—assumed fission widths (generally very small) were obtained with sufficient accuracy in previous evaluation

- SAMMY analyses
 - Allowed estimation of normalization corrections and background adjustments
 - Neutron energy of all measurements aligned to ORELA data
 - Kolar et al samples too small to permit identification of small s-wave resonances and p-wave resonances (particularly above 1 keV)
 - Harvey-Gwin thick sample permitted identification of s-wave and pwave resonances

- > New evaluation compared with previous evaluation
 - Previous evaluation using Kolar data had 425-resonances (all identified as s-wave)
 - New evaluation: 428 s-wave resonances and 121 p-wave resonances
 - Values of neutron widths in new evaluation very close to previous evaluation below ~700 eV
 - Above 700 eV smaller widths obtained due to re-evaluation of experimental resolution of Kolar data
 - Total cross-section value at 0.0253 eV based on new resonance parameters: 284.05 b
 - Agrees with Spencer data
 - Significantly smaller than 289 b value recommended by Atlas of Neutron Resonance Parameters
 - Thermal capture value is also smaller
- Capture resonance integral (0.5 eV to 7.7 keV)
 - New evaluation: 8492 b
 - JEFF-3.1.1: 8479
 - ENDF/B-VII.0: 8480

SAMMY Fit ²⁴⁰Pu Transmission

SAMMY ²⁴⁰Pu (Thermal)

Re-evaluation resulted in consistent set of covariance data—plots of PUFF-IV processed ²⁴⁰Pu correlation data (total and capture shown):

Plots of PUFF-IV processed ²⁴⁰Pu correlation data (elastic and fission shown):

Plots of ²⁴⁰Pu cross-reaction correlation data (capture-elastic and capture-fission shown):

Evaluation Summary

	Resonance Evaluation	Resonance Covariance Evaluation	High Energy Evaluation	High Energy Covariance Evaluation
⁵⁰ Cr	ORNL (new evaluation)	ORNL (new evaluation)	FZK Germany	FZK Germany
⁵² Cr	ORNL (new evaluation)	ORNL (new evaluation)	FZK Germany	FZK Germany
⁵³ Cr	ORNL (new evaluation)	ORNL (new evaluation)	FZK Germany	FZK Germany
⁵⁴ Cr	ORNL (new evaluation)	ORNL (new evaluation)	FZK Germany	FZK Germany
⁵⁸ Ni	ORNL (new evaluation)	ORNL (new evaluation)		
⁶⁰ Ni	ORNL (new evaluation)	ORNL (new evaluation)		

Evaluation Summary

	Resonance Evaluation	Resonance Covariance Evaluation	High Energy Evaluation	High Energy Covariance Evaluation
W isotopes	ORNL (retroactive)	ORNL (retroactive)	IAEA	IAEA
(180, 182, 183, 184, 186)				
⁵⁵ Mn	ORNL (new evaluation)	ORNL (new evaluation)	IAEA	IAEA
⁴⁶ Ti	ORNL (retroactive)	ORNL (retroactive)	LANL	LANL
⁴⁷ Ti	ORNL (retroactive)	ORNL (retroactive)	LANL	LANL
⁴⁸ Ti	ORNL (new evaluation)	ORNL (retroactive)	LANL	LANL
⁴⁹ Ti	ORNL (retroactive)	ORNL (retroactive)	LANL	LANL
⁵⁰ Ti	ORNL (retroactive)	ORNL (retroactive)	LANL	LANL
²⁴⁰ Pu	ORNL (new evaluation)	ORNL (new evaluation)	LANL	LANL

Comments on Additional ORNL Evaluations

- > ³⁵Cl and ³⁷Cl: submitted in 2007—little or no benchmark testing
 - ³⁵CI has LRF=7 resonance format NJOY update needed to process
- ➢ ³⁹K and ⁴¹K: submitted Oct 2008—little or no benchmark testing
- ► ⁵⁵Mn:
 - Updated evaluation submitted in 2010 to add correct File 33 covariance data for resonance region
 - ORNL resonance evaluation coupled with IAEA high-energy evaluation
- ¹⁹F: submitted Oct 2008
 - New LRF=7 resonance format NJOY update needed to process
 - inelastic scattering data incorporated in resonance analysis
 - New evaluation has not improved benchmark performance—but has not made benchmark calculations worse either

Comments on Additional Evaluations

- ▶ 180, 182, 183, 184, 186**₩**:
 - ORNL retroactive resonance parameter covariance evaluation in collaboration with IAEA high-energy evaluation
- ²³³U, ²³⁵U, and ²³⁸U: covariance evaluations: submitted March 2008
 - ORNL (resonance parameter covariance data) and LANL (High energy covariance data)
 - ²³³U updated file submitted in 2010 to use LANL high-energy evaluation down to top of resolved region
 - Covariance data utilized in SG33 analyses and also distributed with SCALE 6 by ORNL
- Hf-isotopes: submitted by RQ Wright—testing??

