

Idaho Accelerator Center: Overview of Nuclear Physics Research

D.P. Wells, Director Idaho Accelerator Center Idaho State University

November5, 2010

Idaho Accelerator Center

The Idaho Accelerator Center: (IAC)

Founded in 1996, it is now one of the largest university accelerator centers in North America.

What is the Idaho Accelerator Center?

Electrons/Gammas

- 4 MeV LINACs
- 10 MeV Induction Accel. (~10 kA)
- (4) 25 MeV e- LINACS
- High Rep-Rate 15 MeV e- Linac
- 44 MeV, 6 kW Short Pulse LINAC
- In Storage: BOEING FEL (100 MeV, 100 mA, 1MW)
- Numerous X-Ray tubes and Neutron Sources
- Light lons
 - 2 MeV Van de Graaff

Accelerators in Storage

- 20 Electron Linacs: P, L, S and X-band
- 18 MeV Cyclotron
- 20 MeV Betatron
- Tandetron

L-Band Traveling Wave Linac

- Infrastructure
 - ~3,500 M² Lab Space
 - Machine Shop
 - Electronics Shop

Capabilities Today: 3 Labs

- Main Lab:
 - 44 MeV, 6 kW fast-pulse e-linac
 - 25 MeV, 2 kW e-linac
 - 70 GW (peak-power) pulsed-power electron accelerator,
 - Research focuses on high energy-density physics, device testing, nuclear physics, isotope production, non-proliferation/homeland-security and novel xray/gamma beams.
- Airport Lab:
 - X-ray machines (INL) and 25 MeV, mobile e-linac (INL).
 - Research, mostly led by INL, focuses on national/homeland security applications and testing ground.
- Physics Lab
 - High repetition-rate e-linac (3kHz rep rate, 20 MeV) and 2 MV positive-ion Van de Graaff
 - Research focused on materials, non-proliferation/homeland security applications, positron beam physics, and polarized gamma-beams.

Capabilities Tomorrow: Main Lab

- 6 MV tandem Pelletron (INL):
 - Intense Neutron Source
 - NTOF and low-energy neutron cross sections
 - Materials irradiation, radiation effects on devices, ion beam analysis, positron annihilation spectroscopy, nuclear physics, radio-biology,
- 10 kW, 30 MeV e-linac:
 - Isotope production, photon activation analysis,
- Add-on to 44 MeV e-linac?:
 - Storage Ring and Tagger?
- New Lab Space:
 - New radio-chemistry lab, electronics shop, counting/detector lab
 - New machine shop, conference room, offices, library.

IAC New Additions...

INL Pelletron in position...

Current Research and Education Emphases:

- Nuclear non-proliferation and homeland nuclear security research
 - Partners with DHS, DOE (INL and other labs) DoD and private sector (L3 Communications, Battelle).
- Non-destructive Materials Analysis
 - Partnerships with the private sector, DOE and DoD to pursue novel, penetrating nondestructive measurements on structural and fuels materials
- Fundamental Nuclear Physics at J-Lab
- Isotope Production and other medical physics
 - Partnering with DOE (PNNL and other labs), Lockheed-Martin, and private sector partners.
- Note: ALL of these areas require nuclear data measurements:
 - Elastic and Inelastic Neutron Cross Sections for Nuclear Fuels Materials
 - Photo-fission, neutron-fission, NRF
 - Photo-production (photo-activation)
 - Elastic and inelastic electron/phton scattering data at J-Lab

<u>Photo-fission yields Multiple Signals</u> for fissionable-material signatures and a lot of the phase-space remains unexplored:

$$d\sigma^X/dE_{n1}^*dE_{n2}^*...$$

- Photo-fission induces a large number of potential signals (and correlations thereof) for analysis:
 - Prompt and delayed gammas
 - temporal, spatial and energy asymmetries
 - temporal, spatial and energy correlations
 - temporal, spatial and energy mutiplicities
 - Polarization observables
 - Prompt and delayed neutrons
 - temporal, spatial and energy asymmetries
 - temporal, spatial and energy correlations
 - temporal, spatial and energy mutiplicities

- "Delayed" Neutrons are Almost Exclusively from Fissionable Materials:
 - Millions More Neutrons Detected for uranium than for lead.
- Sensitivity for ²³⁸U, ²³²Th and ²³⁹Pu ~5 mg (approximately 1/6 of an ounce):
 - Easy to Improve with Application Specific Detectors.

Potential Applications of Active Inspection

Waste Assaying

- Nuclear energy
- Sensitivity, specificity, accuracy

Safeguards (MPACT)

- Nuclear energy
- Specificity, accuracy, speed
- Treaty Verification
 - Nonproliferation, Diplomacy
 - Sensitivity, specificity
- Nuclear Forensics
 - Military, law enforcement
 - Specificity, speed, accuracy

Cargo Screening

- Security, customs
- Sensitivity, speed, environment

Long Standoff

- Military
- Sensitivity, speed, environment

Nondestructive Key!

- Sensitivity Minimal detectable mass
- Accuracy Mass determination
- Speed How fast is inspection
 - Specificity Isotope identification
- Environment How much dose

Example 1: Plethora of Delayed y-Rays with Stimulation

- Bremsstrahlung pulse
 17 MeV, 4 μs, ~67 μGy
- Irradiation
 15 Hz, 2 hours
- Target: 52.3 g ²³⁸U in 1 L H₂O

- "During" irradiation
 - Acquire between pulses 32 to 66 ms
 - Avoids detecting (n,γ) reactions
 - Plethora of high-energy γ -rays
 - Fingerprint of fissioning system

Fission Fragments Dictate Spectrum

- Light mass shifts linearly
- Heavy mass almost constant
 - Magic numbers pin centroid

- Fingerprint changes with isotope
 - Energy and temporal
- Lack of photofission data

Detection Signature is Straight Forward

- Initial decay from (n,γ) reactions
- Delayed γ-ray signature
 - Above 3 MeV, times beyond ~32 ms
- Nearly constant between pulses
- Minimal Det. Mass: ~90 mg (6.8 ppm)
- Decay more obvious on longer timescale

- Fission fragments determine
 - High-energy yield
 - Temporal characteristics

Discrepancies Identified with Fragment Distribution

- Normalize to fiducial ⁸⁶Br, ¹³³Sb ٠
- Short-lived isotopes dominate ٠
- Distribution spectra is not bad ٠
 - There are problems

- Discrepancies
 - Isotopes missing in data
 - Lines missing from distribution

3.75

3288 keV

0.55 s

3310 keV ⁹⁸Ү

3300

3345 keV ¹²⁶ln 1.6

3401 keV ⁹⁷Y 3.75

3400

(n,f) dist. compared to (γ,f) data

Discrete y-Ray Lines Allow Isotope Identification

- ⁸⁶Br, ¹³³Sb strong in ²³²Th and ²³⁸U
 Use as fiducial
- ⁹⁸Y, ¹⁰⁶Tc weak in ²³²Th but strong in ²³⁸U
 - Use as signature

- Ratio of signature to fiducial
 - Uniquely determines isotopic ratio
 - Large errors: subset of data, hard fit
 - Can we do better?

Use basis spectra to determine isotopic ratios

$$\Phi(E_{\gamma}) = \beta_{238} \cdot \phi_{238}(E_{\gamma}) + \beta_{232} \cdot \phi_{232}(E_{\gamma})$$

Measured Spectra Basis Spectra

- More accurate isotopic ratios
 - Use more of the available data
 - "Eliminate" difficulty in fitting individual peaks

Need basis spectra

- Use experimental spectra
 - Accuracy due to statistical errors
- Use spectra based on fission fragment distribution (are they correct)
 - Are distributions correct
- Determine β 's
 - Linear regression (uniqueness?)
 - Non-orthogonal basis set (uniqueness?)
 - Construct orthogonal basis set (how to develop?)

Experimental Basis Set → Smaller Errors

- Slight differences in background
- Model independent but experiment specific

Fast and Complete Delayed γ-Ray Modeling Program Flow:

- Fast deterministic calculation; Extensive library, reconstructs all known chains
- Photofission is a challenge in CINDER
- Algorithm to be incorporated into MCNP6

* V. Mozin and S. J. Tobin

20

Conclusions I

- Plethora of delayed γ-rays
 - Detection: High-energy γ -rays (> 3 MeV) at long times
 - True for (γ,f)
 - (n,f) may have issues from ${}^{A}Z(n, \gamma) {}^{A+1}Z$ reactions (e.g. ${}^{56}Mn$)
 - Identification: Discrete delayed γ -rays provide fingerprint
 - Line ratios: Straight forward, large statistical error bars
 - Basis spectra: More complicated, smaller error bars, systmatic error bars
- Delayed γ-ray modeling
 - Fast deterministic algorithm ($\text{MCNPX} \rightarrow \text{CINDER} \rightarrow \text{VM}$ Code \rightarrow MCNPX)
 - Great agreement: ²³⁹Pu experiments and simulation/model
 - Need to extend: other targets, determine ²³⁵U contribution, etc...
 - Incorporate photofission
 - Algorithm to be incorporated into MCNP6

Conclusion II

- What about ²³⁵U and ²³⁹Pu
 - Currently have 11 g of ²³⁹Pu
 - NRC permit allows ~290 g of ²³⁵U (HEU)
 - Currently installing security
 - Will acquire sample from DOE
 - Extract ²³⁵U spectra from moderated neutron data
- Tons of ²³⁹Pu data
 - Photofission, "fission" neutrons, moderated neutrons, Cd wrapped
 - Binary data is very large; especially with thermal neutrons
 - Problem with Microsoft STL file handling: 64-bit pointer converted to 32-bit
 - Workaround should be finished this week
- Coincident delayed γ-ray
 - Almost all data taken has included 2 HPGe detectors in coincidence
 - Preliminary photofission data analyzed

Goals

- Explore a possible new signature from polarization observables for fissile materials.
- Investigate potential for quantification of fissile isotopes.
- Determine potential for isotopic specificity.
- Increase database on nuclear photofission.
- Do a little interesting fundamental nuclear physics.

The question:

- In photofission, neutrons "boil off" of fission fragments isotropically in their c.o.m. frame. β_n ~ 0.04c.
- Fission fragments have non-isotropic angular distribution w.r.t. incoming photon beam. β_{FF} ~ 0.05c.

Will this be reflected in the neutron angular distribution?

Photofission fragment angular distributions

• First measurement: Winhold and Halpern Phys. Rev., 103, number 4, p. 990, 1956.

 $a + b sin^2 \theta$

a/b depends on

- energy of photons
- target
- fission fragments observed
- > Is this reflected in neutron angular distribution?

Difficult to see.

If the photons are polarized quantum mechanics says:

 $W(\theta,\phi) = A_o + A_2(P_2(\cos\theta) + P\gamma f_2(1,1)\cos 2\phi P_2^2(\cos\theta))$

- A₀ and A₂ depend on the transition state (J,K).
- Pγ is the photon polarization.
- $f_2(1,1) = 3 \sin^2 \theta$.
- θ is the polar angle with respect to the beam.
- ϕ is the azimuthal angle.

Angular distribution of fission fragments depends on angular momentum of transition state:

K: Projection of angular momentum on symmetry axis of nucleus

 θ distribution of fission fragments with photon beam polarization of 30% for K = 0,1 and ϕ = 0, 90°.

Adopted from: Ratzek, et al. Z. Phys A – Atoms and Nuclei 308 63-71 (1982)

Simulated azimuthal distribution of neutrons: 30% photon polarization

Fission fragment angular distribution reflected in neutron azimuthal angle distribution.

Neutron azimuthal angle (degrees)

Study this with the following approximations

- The fission fragment mass distribution was sampled uniformly from 85 < A < 105 and 130 < A < 150.
- A fixed amount of total kinetic energy, 175 MeV , is given to the fission fragments.
- Neutrons are emitted isotropically in the center of mass of the fully accelerated fission fragments with an energy distribution given by:

 $N(E) = E_n^{\frac{1}{2}} exp(-E_n/0.75)$

• The fission fragment angular distribution is sampled in both θ and ϕ for either K = 0 or K = 1, and the neutrons were given the appropriate kinematic boost.

Simulated asymmetries

<u>Pure K = 0:</u>

- $N(\theta = 0, \phi = 0)/N(\theta = 0, f = \pi/2) = 1.25$ with no cut on neutron energy.
- $N(\theta = 0, \phi = 0)/N(\theta = 0, \phi = \pi/2) = 1.37$ if $E_n > 2 \text{ MeV}$

<u>Pure K = 1:</u>

• $N(\theta = 0, \phi = 0)/N(\theta = 0, \phi = \pi/2) = 0.84$ with no cut on neutron energy.

Experimental setup

Thanks and Acknowledgements:

This work was supported, in part, by:

DOE under contract number DE – FC07 – 06ID 14780.