

¹⁶O and H in H₂O Data Set Testing with ICSBEP Benchmarks

Reza R. Gouw & Mike Zerkle Bettis Laboratory Bechtel Bettis, Inc.

Presented at the June 28, 2006 Cross Section Evaluation Working Group (CSEWG) Data Testing Subcommittee Meeting held at Brookhaven National Laboratory

Introduction

- Bettis has performed continuous energy Monte Carlo (RCP01) eigenvalue calculations for a variety of ICSBEP uranium fueled benchmarks with ENDF/B-VI.8 cross sections, with the "ENDF/B-VII. β 1" cross sections, with "ENDF/B-VII. β 2" cross sections released by BNL, and with LANL's ¹⁶O data set.
- RCP01 eigenvalues are calculated based on 50 million neutron histories in ten independent 5 million history jobs.
 - For RCP01, the 95% eigenvalue confidence interval is determined from the variance in the ten independent eigenvalue estimates and is typically less than 0.0005 Δk (i.e., roughly the size of the plot symbol in subsequent graphs).
- Calculated eigenvalues and subsequent correlations are based upon RCP01 results unless explicitly labeled otherwise.
- A majority of these calculations use models derived from the ICSBEP Handbook:
 - xxx-SOL-THERM
 - 9 HEU evaluations, 31 critical configurations plus two ORNL experiments (L5, L6) that appear in the 2005 edition of the Handbook.
 - 4 evaluations (8 critical configurations) include a H_2O reflector.
 - 9 LEU evaluations, 39 critical configurations
 - 4 evaluations (19 critical configurations) include a H_2O reflector.

HST Benchmarks

Benchmark Name	ENDF/B-VI.8	ENDF/B-VI.8 + ENDF/B-VII.b1 ¹⁶ O	ENDF/B-VI.8 + LANL ¹⁶ O	ENDF/B-VI.8 + Mattes	ENDF/B-VI.8 + ENDF/B-VII.β2 HH2O
HST1.1	0.99869(39)	0.99848(25) *	0.99909(19) *	0.99760(32) ↓	0.99787(23) ↓
HST1.2	0.99540(37)	0.99548(28) *	0.99587(31) *	0.99502(14) *	0.99496(33) *
HST1.3	1.00193(29)	1.00179(31) *	1.00243(24) *	1.00077(30) ↓	1.00089(27) ↓
HST1.4	0.99756(27)	0.99752(29) *	0.99789(26) *	0.99702(28) ↓	0.99723(45) *
HST1.5	0.99966(32)	0.99963(35) *	1.00014(26) *	0.99867(23) ↓	0.99801(16) ↓↓
HST1.6	1.00290(23)	1.00285(25) *	1.00351(21) 1	1.00168(35) ↓	1.00138(27) ↓↓
HST1.7	0.99822(24)	0.99834(26) *	0.99866(38) *	0.99707(23) ↓	0.99720(40) ↓
HST1.8	0.99851(31)	0.99837(30) *	0.99845(25) *	0.99723(25) ↓	0.99725(27) ↓
HST1.9	0.99339(37)	0.99343(34) *	0.99400(14) 1	0.99285(33) ↓	0.99323(35) *
HST1.10	0.99325(17)	0.99326(32) *	0.99392(38) 1	0.99189(21) ↓	0.99155(24) ↓↓
HST-9.1	0.99927(29)	0.99933(17) *	0.99994(26) 1	0.99975(32) *	1.00169(24) 11
HST-9.2	0.99989(29)	1.00016(21) *	1.00029(16) *	1.00019(25) *	1.00196(30) 11
HST-9.3	0.99977(25)	0.99993(43) *	1.00042(23) 1	0.99967(24) *	1.00186(29) 11
HST-9.4	0.99459(21)	0.99465(27) *	0.99499(32) *	0.99463(34) *	0.99635(50) 11
HST10.1	1.00027(34)	1.00050(36) *	1.00089(32) 1	0.99968(29) ↓	1.00115(23) 1
HST11.1	1.00428(26)	1.00459(23) *	1.00511(32) 1	1.00374(27) ↓	1.00421(20) *
HST11.2	1.00062(23)	1.00078(30) *	1.00131(26) 1	0.99988(27) ↓	1.00037(27) *
HST12.1	1.00098(23)	1.00086(15) *	1.00164(14) 1	1.00032(17) ↓	1.00009(22) ↓
HST13.1	0.99738(14)	0.99724(24) *	0.99809(21) 1	0.99668(17) ↓	0.99625(17) ↓
HST32.1	0.99677(13)	0.99677(08) *	0.99776(12) 1	0.99637(15) *	0.99640(12) *

NOTE: (Relative to ENDF/B-VI.8 values)

HST Benchmarks (Cont'd)

Benchmark Name	ENDF/B-VI.8	ENDF/B-VI.8 + ENDF/B-VII.b1 ¹⁶ O	ENDF/B-VI.8 + LANL ¹⁶ O	ENDF/B-VI.8 + Mattes	ENDF/B-VI.8 + ENDF/B-VII.β2 HH2O	
HST42.1	1.00033(18)	1.00055(16) *	1.00129(08) *	1.00001(18) *	0.99971(17) ↓	
HST42.2	0.99935(16)	0.99930(13) *	1.00015(14) *	0.99886(12) *	0.99877(14) ↓	
HST42.3	1.00033(13)	1.00031(13) *	1.00126(13) *	0.99998(13) *	0.99996(09) *	
HST42.4	1.00102(10)	1.00096(09) *	1.00195(10) *	1.00070(11) *	1.00068(11) *	
HST42.5	0.99872(08)	0.99872(12) *	0.99973(08) 1	0.99845(09) *	0.99863(11) *	
HST42.6	0.99910(08)	0.99909(07) *	1.00006(15) 1	0.99883(11) *	0.99891(13) *	
HST42.7	0.99988(10)	0.99986(08) *	1.00089(07) 1	0.99969(07) *	0.99984(10) *	
HST42.8	1.00042(11)	1.00039(09) *	1.00150(07) 1	1.00022(08) *	1.00047(10) *	
HST43.1	0.99650(22)	0.99658(23) *	0.99681(15) *	0.99568(25) ↓	0.99589(31) ↓	
HST43.2	1.00633(21)	1.00639(25) *	1.00704(21) 1	1.00561(19) ↓	1.00513(22) ↓	
HST43.3	1.00207(16)	1.00204(19) *	1.00281(16) 1	1.00136(09) ↓	1.00103(08) ↓	
L5	1.00093(27)	1.00077(23) *	1.00134(36) *	1.00071(21) *	1.00088(26) *	
L6	1.00107(26)	1.00088(21) *	1.00144(18) *	1.00059(36) *	1.00078(26) *	

NOTE: (Relative to ENDF/B-VI.8 values)

LST Benchmarks

Benchmark Name	ENDF/B-VI.8	ENDF/B-VI.8 + ENDF/B-VII.b1 ¹⁶ O	ENDF/B-VI.8 + LANL ¹⁶ O	ENDF/B-VI.8 + Mattes	ENDF/B-VI.8 + ENDF/B-VII.β2 HH2O
LST1	1.01024(17)	1.01028(23) *	1.01110(12) 1	1.00954(21) ↓	1.01055(25) *
LST2.1	0.99384(18)	0.99384(19) *	0.99474(14) 1	0.99351(12) *	0.99387(13) *
LST2.2	0.99180(22)	0.99188(21) *	0.99254(26) 1	0.99111(16) ↓	0.99162(19) *
LST3.3	0.99937(18)	0.99937(24) *	1.00016(19) 1	0.99876(21) ↓	0.99937(18) *
LST3.6	0.99715(16)	0.99725(28) *	0.99803(24) 1	0.99663(14) ↓	0.99711(17) *
LST3.9	0.99638(10)	0.99637(10) *	0.99735(10) 1	0.99597(10) *	0.99633(11) *
LST4.1	0.99957(11)	0.99959(22) *	1.00007(17) 1	0.99894(29) ↓	0.99954(19) *
LST4.2	1.00033(18)	1.00022(20) *	1.00105(22) 1	0.99960(20) ↓	1.00025(16) *
LST4.3	0.99812(16)	0.99809(21) *	0.99908(22) 1	0.99758(21) ↓	0.99821(13) *
LST4.4	1.00050(22)	1.00041(14) *	1.00128(18) 1	0.99993(21) ↓	1.00052(18) *
LST4.5	1.00044(18)	1.00036(13) *	1.00136(12) 1	0.99996(16) *	1.00038(18) *
LST4.6	0.99992(22)	1.00010(13) *	1.00091(20) 1	0.99954(13) *	0.99998(16) *
LST4.7	1.00001(17)	0.99996(11) *	1.00090(15) 1	0.99951(13) ↓	0.99989(16) *
LST7.1	0.99765(17)	0.99775(14) *	0.99857(13) 1	0.99696(13) ↓	0.99775(27) *
LST7.2	0.99880(21)	0.99876(23) *	0.99972(19) 1	0.99789(13) ↓	0.99877(18) *
LST7.3	0.99635(18)	0.99637(24) *	0.99715(19) 1	0.99571(23) ↓	0.99628(28) *
LST7.4	0.99803(14)	0.99799(17) *	0.99898(16) 1	0.99747(19) ↓	0.99818(15) *
LST7.5	0.99791(28)	0.99774(16) *	0.99888(19) 1	0.99725(18) ↓	0.99775(17) *

NOTE: (Relative to ENDF/B-VI.8 values)

₩:	$\Delta k <$	-0.0015	↓:	-0.0015	<	Δk	<	-0.0005
††:	Δk >	0.0015	1:	0.0005	<	∆k	<	0.0015

LST Benchmarks (Cont'd)

Benchmark Name	ENDF/B-VI.8	ENDF/B-VI.8 + ENDF/B-VII.b1 ¹⁶ O	ENDF/B-VI.8 + LANL ¹⁶ O	ENDF/B-VI.8 + Mattes	ENDF/B-VI.8 + ENDF/B-VII.β2 HH2O
LST16.1	1.00443(23)	1.00438(24) *	1.00503(33) 1	1.00370(28) ↓	1.00427(18) *
LST16.2	1.00417(16)	1.00417(26) *	1.00492(21) 1	1.00337(29) ↓	1.00425(23) *
LST16.3	1.00426(17)	1.00438(20) *	1.00504(24) 1	1.00351(28) ↓	1.00410(24) *
LST16.4	1.00340(15)	1.00340(25) *	1.00418(14) 1	1.00256(14) ↓	1.00340(27) *
LST16.5	1.00300(21)	1.00306(15) *	1.00391(15) 1	1.00232(18) ↓	1.00316(18) *
LST16.6	1.00203(29)	1.00188(08) *	1.00289(26) 1	1.00106(24) ↓	1.00188(15) *
LST16.7	1.00297(17)	1.00296(11) *	1.00372(27) 1	1.00223(14) ↓	1.00295(15) *
LST17.1	0.99558(23)	0.99567(18) *	0.99644(33) 1	0.99467(19) ↓	0.99580(19) *
LST17.2	0.99647(13)	0.99643(13) *	0.99718(22) 1	0.99552(27) ↓	0.99649(16) *
LST17.3	0.99751(23)	0.99757(28) *	0.99848(25) 1	0.99659(20) ↓	0.99768(20) *
LST17.4	0.99919(12)	0.99898(32) *	1.00000(17) 1	0.99832(24) ↓	0.99915(27) *
LST17.5	1.00040(13)	1.00073(14) *	1.00134(16) 1	0.99973(12) ↓	1.00045(16) *
LST17.6	0.99994(19)	1.00012(16) *	1.00089(25) 1	0.99929(28) ↓	1.00007(20) *
LST20.1	0.99912(21)	0.99913(13) *	0.99995(17) 1	0.99839(19) ↓	0.99913(17) *
LST20.2	0.99853(19)	0.99855(21) *	0.99930(15) 1	0.99802(21) ↓	0.99855(24) *
LST20.3	0.99762(13)	0.99761(18) *	0.99853(19) 1	0.99722(14) *	0.99767(12) *
LST20.4	0.99868(27)	0.99852(22) *	0.99945(16) 1	0.99806(18) ↓	0.99853(17) *
LST21.1	0.99831(12)	0.99823(30) *	0.99916(15) 1	0.99774(16) ↓	0.99830(21) *
LST21.2	0.99851(15)	0.99848(12) *	0.99943(16) 1	0.99791(18) ↓	0.99849(16) *
LST21.3	0.99711(15)	0.99699(18) *	0.99798(17) 1	0.99657(21) ↓	0.99714(15) *
LST21.4	0.99867(12)	0.99864(18) *	0.99974(17) 1	0.99824(14) *	0.99867(23) *

NOTE: (Relative to ENDF/B-VI.8 values)

₩:	Δk <	-0.0015	↓:	-0.0015	<	Δk	<	-0.0005
††:	Δk >	0.0015	1:	0.0005	<	Δk	<	0.0015

Comparison between ENDF/B VI.8 ¹⁶O vs. ENDF/B VII.β1 ¹⁶O

Comparison between ENDF/B VI.8 ¹⁶O vs. LANL ¹⁶O

Comparison between ENDF/B VI.8 ¹⁶O vs. ENDF/B VII.β1 ¹⁶O

Comparison between ENDF/B VI.8 ¹⁶O vs. LANL ¹⁶O

Comparison between ENDF/B VI.8 H in H₂O vs. Mattes H in H₂O

Comparison between ENDF/B VI.8 H in H_2O vs. ENDF/B VII. $\beta 2$ H in H_2O

Comparison between ENDF/B VI.8 H in H₂O vs. Mattes H in H₂O

Comparison between ENDF/B VI.8 H in H_2O vs. ENDF/B VII. $\beta 2$ H in H_2O

Comparison between ENDF/B VI.8 H in H₂O vs. combination of ENDF/B VII.β2 H in H₂O and LANL ¹⁶O

Comparison between ENDF/B VI.8 H in H₂O vs. combination of ENDF/B VII.β2 H in H₂O and LANL ¹⁶O

Comparison between ENDF/B VI.8, ENDF/B-VII.β0, ENDF/B-VII.β1, and ENDF/B-VII.β2

Comparison between ENDF/B VI.8, ENDF/B-VII.β0, ENDF/B-VII.β1, and ENDF/B-VII.β2

Summary

• ATLF

- k(ATLF) = 0.9995(13) 0.0007(49)*ATLF
- k(ATLF) = 0.9995(13) 0.0005(49)*ATLF
- k(ATLF) = 1.0006(13) 0.0018(49)*ATLF
- k(ATLF) = 0.9989(13) 0.0007(48)*ATLF
- k(ATLF) = 0.9992(13) + 0.0005(50)*ATLF
- k(ATLF) = 0.9988(13) + 0.0016(50)*ATLF
- ATFF
 - k(ATFF) = 0.9996(09) 0.0025(92)*ATFF
 - k(ATFF) = 0.9996(09) 0.0026(93)*ATFF
 - k(ATFF) = 1.0004(09) 0.0041(93)*ATFF
 - k(ATFF) = 0.9989(09) 0.0012(92)*ATFF
 - k(ATFF) = 0.9993(10) + 0.0002(94)*ATFF
 - k(ATFF) = 0.9990(10) + 0.0023(94)*ATFF
- LANL ¹⁶O
 - slight increase in eigenvalues on average.
 - slight increase to ATLF and ATFF regression trends.
- Mattes H-H₂O Thermal Scattering Kernel:
 - slight reduction to eigenvalues on average.
 - slight improvement to ATFF regression trend.
- ENDF/B-VII.β2 H-H₂O Thermal Scattering Kernel
 - recovers Mattes eigenvalue reduction.
 - improved ATFF and ATLF (slightly) regression trends.

ENDF/B VI.8

ENDF/B VI.8 + ENDF/B VII β 1 ¹⁶O ENDF/B VI.8 + LANL ¹⁶O ENDF/B VI.8 + Mattes S(α , β) ENDF/B VI.8 + ENDF/B VII β 2 S(α , β) ENDF/B VI.8 + ENDF/B VII β 2 S(α , β) & LANL ¹⁶O

ENDF/B VI.8 ENDF/B VI.8 + ENDF/B VII β 1 ¹⁶O ENDF/B VI.8 + LANL ¹⁶O ENDF/B VI.8 + Mattes S(α , β) ENDF/B VI.8 + ENDF/B VII β 2 S(α , β) ENDF/B VI.8 + ENDF/B VII β 2 S(α , β) & LANL ¹⁶O

ENDF/B VIIβ1

ENDF/B VIIβ2

ENDF/B VIIβ0

ENDF/B VIIβ1

Recommendation

• ATLF

- k(ATLF) = 0.9995(13) 0.0007(49)*ATLF ENDF/B VI.8
- k(ATLF) = 1.0003(14) 0.0023(49)*ATLF ENDF/B VII $\beta 0$
- k(ATLF) = 0.9994(14) 0.0035(50)*ATLF
- k(ATLF) = 1.0000(14) 0.0027(50)*ATLF
- ATFF

•

- k(ATFF) = 0.9996(09) 0.0025(92)*ATFF ENDF/B VI.8
- k(ATFF) = 0.9999(10) 0.0055(96)*ATFF
- k(ATFF) = 0.9989(10) 0.0053(96)*ATFF
- k(ATFF) = 0.9996(10) 0.0039(92)*ATFF ENDF/B VII β 2
- Bettis recommends use of both LANL ¹⁶O and β 2 H-H₂O scattering kernel in ENDF/B-VII.

Preliminary ENDF/B-VII.β2 Decay File Checking

Mike Zerkle & Dave Carpenter Bettis Laboratory Bechtel Bettis, Inc.

Presented at the June 28, 2006 Cross Section Evaluation Working Group (CSEWG) Data Testing Subcommittee Meeting held at Brookhaven National Laboratory

Introduction

- Bettis has performed a series of consistency check on ENDF/B-VII.β2 decay file (MF=8, MT=457) data.
- Screened all 3380 nuclides
- Concerned with potential impact on decay heat analyses.

Observations

- Branching fractions do not sum to unity for 837 nuclides
 - Round-off for 695 nuclides (not technically significant)
 - Discrepancies beyond round-off for 142 nuclides (some errors)
- Identical average LP and EM decay energies for 1676 nuclides
 - Mostly appear to be neutron rich/poor nuclides from JEF
 - Need additional review to determine impact on decay heat analyses
- Identical average LP, EM, and HP decay energies for 12 nuclides
 - Mostly appear to be neutron rich/poor nuclides from JEF
 - Need additional review to determine impact on decay heat analyses
- Round-off issues with half-life for 805 nuclides
 - Not technically significant an annoyance

Branching Fraction Discrepancies

2-He- 5 Sum of BFs = 0.55-B - 15 Sum of BFs = 1.5411-Na- 27 Sum of BFs = 1.001318-Ar- 31 Sum of BFs = 1.31, duplicate b+ 19-к - 52 Sum of BFs = 1.36, duplicate b+ 20-Ca- 38 Sum of BFs = 1.00943820-Ca- 48 Sum of BFs = 1.0925-Mn- 52M Sum of BFs = 1.0161, duplicate b+ 26-Fe- 46 Sum of BFs = 10.030-Zn- 69M Sum of BFs = 3.3E-4, missing IT 31-Ga- 80 Sum of BFs = 1.008632-Ge- 60 Sum of BFs = 0.5Sum of BFs = 1.000135-Br- 78 35-Br- 88 Sum of BFs = 0.998236-Kr- 73 Sum of BFs = 1.002536-Kr- 81M Sum of BFs = 1.00002536-Kr- 93 Sum of BFs = 1.019537-Rb- 84 Sum of BFs = 1.00239-Y - 85M Sum of BFs = 1.0000239-Y - 90M Sum of BFs = 1.00001841-Nb- 89M Sum of BFs = 0.99541-Nb- 92 Sum of BFs = 1.000543-Tc- 99M Sum of BFs = 1.000037Sum of BFs = 0.98, missing IT 43-Tc-102M 46-Pd- 93M Sum of BFs = 0.5Sum of BFs = 1.00001147-Aq- 98 47-Aq-110M Sum of BFs = 0.9992 48-Cd-107 Sum of BFs = 1.00128448-Cd-115 Sum of BFs = 1.00166249-In-127 Sum of BFs = 1.000349-In-129 Sum of BFs = 1.001549-In-129M Sum of BFs = 1.026

50-Sn-126 Sum of BFs = 1.04908850-Sn-129M Sum of BFs = 1.0000251-Sb-104 Sum of BFs = 1.01Sum of BFs = 0.964, missing IT 51-Sb-128M 52-Te-110 Sum of BFs = 1.0000352-Te-136 Sum of BFs = 1.01353-I -108 Sum of BFs = 1.0153-I -112 Sum of BFs = 1.00001254-Xe-113 Sum of BFs = 1.000154-Xe-135M Sum of BFs = 0.99455-Cs-114 Sum of BFs = 1.000256-Ba-142 Sum of BFs = 0.999156-Ba-144 Sum of BFs = 0.96456-Ba-147 Sum of BFs = 0.999860-Nd-141M Sum of BFs = 1.049561-Pm-139M Sum of BFs = 0.999463-Eu-140M Sum of BFs = 1.0165-Tb-149M Sum of BFs = 0.99978, missing alpha 65-Tb-150 Sum of BFs = 1.000565-Tb-151 Sum of BFs = 1.00009565-Tb-154 Sum of BFs = 1.00165-Tb-154M Sum of BFs = 0.783, missing IT 65-Tb-154M2 Sum of BFs = 0.982, missing IT 65-Tb-158M Sum of BFs = 1.0061 66-Dy-149M Sum of BFs = 1.00144 66-Dy-153 Sum of BFs = 1.000093967-Ho-154M Sum of BFs = 1.00001 68-Er-152 Sum of BFs = 1.0169-Tm-162M Sum of BFs = 0.18 Sum of BFs = 1.00002170-Yb-158 71-Lu-155M2 Sum of BFs = 10.0 71-Lu-156M Sum of BFs = 1.9, (2 alpha?)

Branching Fraction Discrepancies

71-Lu-159 Sum of BFs = 1.00171-Lu-167M Sum of BFs = 0.571-Lu-176M Sum of BFs = 1.0009572-Hf-156 Sum of BFs = 0.9772-Hf-157 Sum of BFs = 0.9472-Hf-178M2 Sum of BFs = 1.000449 73-Ta-161 Sum of BFs = 0.9574-W -165 Sum of BFs = 1.00274-W -168 Sum of BFs = 1.00003275-Re-168 Sum of BFs = 1.0000576-0s-166 Sum of BFs = 0.976-0s-172 Sum of BFs = 0.90176-0s-181M Sum of BFs = 1.0377-Ir-167M Sum of BFs = 1.00477-Ir-168 Sum of BFs = 0.8277-Ir-190M2 Sum of BFs = 1.0007586 77-Ir-196M Sum of BFs = 1.003 78-Pt-180 Sum of BFs = 1.00378-Pt-181 Sum of BFs = 1.000878-Pt-183 Sum of BFs = 1.00001379-Au-171M Sum of BFs = 1.0279-Au-172 Sum of BFs = 1.0279-Au-183 Sum of BFs = 1.001979-Au-184M Sum of BFs = 1.000279-Au-187 Sum of BFs = 1.0000380-Hg-174 Sum of BFs = 0.99780-Hg-175 Sum of BFs = 0.9980-Hg-185M Sum of BFs = 1.000380-Hg-186 Sum of BFs = 1.0001881-T1-180 Sum of BFs = 0.07Sum of BFs = 0.181-T1-181 81-T1-186 Sum of BFs = 1.00006

82-Pb-191M	Sum	of	BFs	=	1.00018
83-Bi-197M	Sum	of	BFs	=	1.003
83-Bi-199M	Sum	of	BFs	=	1.0001
83-Bi-201M	Sum	of	BFs	=	1.001
83-Bi-212M	Sum	of	BFs	=	1.3
84-Po-195M	Sum	of	BFs	=	1.0001
84-Po-197M	Sum	of	BFs	=	1.0001
84-Po-201M	Sum	of	BFs	=	0.999
85-At-193M2	Sum	of	BFs	=	0.24
85-At-196	Sum	of	BFs	=	0.94
85-At-200M2	Sum	of	BFs	=	0.99
85-At-202M2	Sum	of	BFs	=	1.0005
85-At-217	Sum	of	BFs	=	0.99988
86-Rn-196	Sum	of	BFs	=	0.998
86-Rn-221	Sum	of	BFs	=	0.98
87-Fr-206M	Sum	of	BFs	=	0.96
89-Ac-208	Sum	of	BFs	=	0.99
89-Ac-208M	Sum	of	BFs	=	0.11
89-Ac-215	Sum	of	BFs	=	0.9991
90-Th-212	Sum	of	BFs	=	1.003
90-Th-225	Sum	of	BFs	=	0.9
92-U -228	Sum	of	BFs	=	0.975
92-U -231	Sum	of	BFs	=	1.00004
92-U -238	Sum	of	BFs	=	1.0000546
93-Np-233	Sum	of	BFs	=	1.00001
93-Np-235	Sum	of	BFs	=	1.000026
93-Np-236	Sum	of	BFs	=	0.9996
93-Np-240	Sum	of	BFs	=	0.9988
94-Pu-237	Sum	of	BFs	=	1.000042
94-Pu-244	Sum	of	BFs	=	1.00004
96-Cm-240	Sum	of	BFs	=	0.997
96-Cm-243	Sum	of	BFs	=	0.9995

Branching Fraction Discrepancies

96-Cm-248 Sum of BFs = 0.998798-Cf-247 Sum of BFs = 1.000198-Cf-248 Sum of BFs = 0.999971 99-Es-248 Sum of BFs = 0.999599-Es-255 Sum of BFs = 1.000041100-Fm-250 Sum of BFs = 1.000069100-Fm-250M Sum of BFs = 0.2100-Fm-254 Sum of BFs = 0.99941100-Fm-257 Sum of BFs = 0.9979101-Md-248 Sum of BFs = 1.0005102-No-256 Sum of BFs = 0.995103-Lr-258 Sum of BFs = 0.95103-Lr-262 Sum of BFs = 1.9108-Hs-267 Sum of BFs = 0.8