



## *KAPL Analyses of Proposed ENDF/B-VII (β2)Nuclear Data*

TH Trumbull CR Lubitz

June 27<sup>th</sup>, 2006

## Overview

- Testing of the LANL proposed <sup>16</sup>O.
- Testing of the ENDF/B-VII(β2) thermal scattering data for H-H<sub>2</sub>O.
- Sensitivity study of SG23 Zirconium.

## New LANL <sup>16</sup>O Data

- PR Page (LANL) reduced the ENDF/B-VI.8 <sup>16</sup>O (n,α) cross section by 32% in the range of 2.4 MeV to 8.9 MeV.
- Total cross sections were preserved by increasing the elastic scattering cross section.
- Analyses performed using a suite of 37 HST's:
  - HST01.1-10, HST09.1-4, HST10.1-4, HST11.1-2, HST12, HST13.1-4, HST32, HST42.1-8, HST43.1-3.

## **HST Ensemble-Averages**

### Comparisons of Various Parameters for ENDF68O16 and PAGEO16 RACER Calculations.

| Parameter        | ENDF68O16 | PAGEO16 | PAGEO16 - ENDF68O16 |
|------------------|-----------|---------|---------------------|
|                  |           |         |                     |
| k-corrected      | 0.99980   | 1.00043 | 0.00063             |
| Total Leakage    | 0.29955   | 0.29991 | 0.00036             |
| H Abs.           | 0.19413   | 0.19429 | 0.00016             |
| O Abs.           | 0.00305   | 0.00220 | -0.00084            |
| U235 Abs.        | 0.49015   | 0.49046 | 0.00031             |
| U235 Fis.        | 0.41044   | 0.41070 | 0.00026             |
| U235 Cap.        | 0.07971   | 0.07976 | 0.00005             |
| U235 Cap. / Fis. | 0.19422   | 0.19421 | 0.00000             |
| U238 Abs.        | 0.00170   | 0.00170 | 0.00000             |

(95% CI on eigenvalues are on the order of 0.0002  $\Delta k$ )

June 27, 2006

## Linear Regression Analysis



k(ATL) = 0.9993(10) + 0.0015(28) \* ATL

k(ATL) = 1.0004(10) + 0.0001(28) \* ATL

#### ENDF/B-VII(β2) H-H<sub>2</sub>O Thermal Data

# Analyzed using suite of 37 HST's. ENDF6.5 used for everything but H-H<sub>2</sub>O.

## **HST Ensemble-Averages**

### Comparisons of Various Parameters for ENDF65 and ENDF/B-VII(β2) Thermal Data RACER Calculations.

(95% CI on eigenvalues are on the order of 0.0002  $\Delta$ k)

| Parameter        | ENDF6.5 | β2      | β2 - ENDF6.5 |
|------------------|---------|---------|--------------|
| k-corrected      | 0.99971 | 0.99921 | -0.00050     |
| Total Leakage    | 0.29985 | 0.29947 | 0.00038      |
| H Abs.           | 0.19411 | 0.19401 | -0.00010     |
| O Abs.           | 0.00319 | 0.00319 | 0.00000      |
| U235 Abs.        | 0.49011 | 0.48984 | -0.00027     |
| U235 Fis.        | 0.41041 | 0.41020 | -0.00021     |
| U235 Cap.        | 0.07971 | 0.07964 | -0.00007     |
| U235 Cap. / Fis. | 0.19422 | 0.19415 | -0.00006     |
| U238 Abs.        | 0.00170 | 0.00170 | 0.00000      |

## Linear Regression Analysis



## Summary and Conclusions

- Mixed effect on reactivity from the β2 H-H2O thermal data.
  - Low leakage, bare benchmark thermal leakage is increased, reducing eigenvalue.
  - High leakage, reflected benchmarks show greater reflector savings and increased eigenvalue.
- HST testing supports the proposed <sup>16</sup>O changes and is neutral on the H-H<sub>2</sub>O data.

## SG23 Zirconium

- The proposed WPEC SG23 zirconium cross sections were tested on some ICSBEP benchmarks and other assemblies.
- A loss of reactivity in thermal reactors, relative to earlier data sets, was mainly due to a lower elastic scattering cross section.
- It appears that some adjustment to the SG23 zirconium cross sections would be desirable.
- Additional zirconium-sensitive benchmarks are needed.

#### Cross Section Sensitivity Study, I

- First round of perturbations:
  - 27 versions of elemental zirconium created
    - -5%, 0, +5% changes to  $\sigma_D$ ,  $\sigma_s$ , and P1 scattering moment over the entire energy range.
  - Thermal benchmark calculations showed reactivity most sensitive to  $\sigma_s$  changes.
    - Increase in  $\sigma_s$  provides increase in reactivity.
- Second round of perturbations:
  - Change the elastic scattering cross section by +5% and +10% for various isotopes and energy ranges.

#### <sup>90</sup>Zr Elastic Cross Section Comparisons



XFOR Data: BET1976, VIR1973, KTY1977, KTY1974

#### Cross Section Sensitivity Study, II

- Sensitivity study of SG23 zirconium isotopes determined that the main effect was from <sup>90</sup>Zr.
- Six modified versions of SG23 <sup>90</sup>Zr were made:
  - +5% and +10% changes to  $\sigma_n$  over the entire energy range,
  - +5% and +10% changes to  $\sigma_n$  from 1.0 x 10<sup>-5</sup> eV to top of URR,
  - +5% and +10% changes to  $\sigma_n$  from top of URR to 20.0 MeV.
- Perturbed cross sections were tested on the following ICSBEP benchmarks: HCI05, MMF11, HCM03, U3CT01, LCT09.
  - HCI05 (KBR-16 k-inf. experiment) and LCT09 (thin zr absorber plates) were insensitive to the perturbations.
  - MMF11 (ZPPR21B), HCM03 (Config. 1), and U3CT01 (SB-1) demonstrate an effect.

#### Cross Section Sensitivity Study, II (continued)



## **Summary and Conclusions**

- Increased elastic scattering increases benchmark reactivity:
  - "Good" for thermal benchmarks (U3CT01)
  - "Bad" for fast (MMF11 and HCM03).
- Additional work is required to identify and analyze additional benchmarks that are sensitive to the perturbations.
- Currently, no specific recommendation for SG23 zirconium adjustments.