LA-UR-06-4324

Approved for public release; distribution is unlimited.

Title: ENDF/B-VII β-2 Results for the MCNP Criticality Validation Suite and Other Criticality Benchmarks

Author(s): Russell D. Mosteller

Submitted to: Validation Meeting on ENDF/B-VII β-2 Brookhaven National Laboratory June 27, 2006

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

ENDF/B-VII β -2 Results for the MCNP Criticality Validation Suite and Other Criticality Benchmarks

Russell D. Mosteller

Threat Analysis and Reduction Section (X-4-TAR)
Applied Physics Division
Los Alamos National Laboratory

To Be Presented at the Validation Meeting on ENDF/B-VII β -2 Brookhaven National Laboratory June 27, 2006

The initial release of the ENDF/B-VII data library is imminent. An assessment of the reactivity behavior produced by the latest pre-release candidate, ENDF/B-VII β -2, has been made using the MCNP5 Monte Carlo code and the benchmarks in the MCNP criticality validation suite. In addition, analyses have been performed for several other criticality benchmarks that have produced problematic results in the past. The results obtained with ENDF/B-VII β -2 are compared with ENDF/B-VI and JENDL-3.3 results for the same cases.

The results from the calculations demonstrate that the ENDF/B-VII changes produce substantial overall improvements relative to ENDF/B-VI and JENDL-3.3. In particular, the calculated ENDF/B-VII results differ from the corresponding benchmark values by more than two standard deviations for only five of the 31 cases in the suite, compared to nine cases for both the ENDF/B-VI and JENDL-3.3 data. Furthermore, ENDF/B-VII β -2 produces improved results relative to ENDF/B-VI for some of the other cases studied. However, improvements still are needed in a number of specific areas, including:

- ²³⁵U cross sections in the unresolved resonance range
- neptunium cross sections
- fast copper cross sections
- thermal ²³⁹Pu cross sections
- angular scattering distribution for deuterium (probably)

ENDF/B-VII β-2 Results for the MCNP Criticality Validation Suite and Other Criticality Benchmarks

Russell D. Mosteller

Applied Physics Division
Los Alamos National Laboratory
mosteller@ lanl.gov

Presented at the Validation Meeting on ENDF/B-VII β-2 Brookhaven National Laboratory June 27, 2007

OVERVIEW OF PRESENTATION

Succinct Description of MCNP Criticality Validation Suite

MCNP5 Results for the Criticality Validation Suite Using ENDF/B-VII β-2, ENDF/B-VI, and JENDL-3.3 Nuclear Data Libraries

MCNP5 Results for Other Criticality Benchmarks Using ENDF/B-VII β-2, ENDF/B-VI, and JENDL-3.3 Nuclear Data Libraries

Conclusions

MCNP Criticality Validation Suite

Cases were selected to encompass a wide variety of

Fissile isotopes: 233U, 235U, and 239Pu

Spectra : Fast, intermediate, and thermal

Compositions : Metals, oxides, and solutions

Configurations: Bare and reflected spheres and cylinders, 2-D and

3-D lattices, and infinite homogeneous and

heterogeneous regions

²³⁵U Cases were subdivided into HEU, IEU, AND LEU

Input specifications for all 31 cases are taken from the *International Handbook of Evaluated Criticality Safety Benchmark Experiments*

CASES IN THE MCNP CRITICALITY VALIDATION SUITE

Spectrum		Fast		Intermed	The	rmal
Geometry	Bare	Heavy Reflector	Light Reflector	Any	Lattice of Fuel Pins	Solution
²³³ U	Jezebel-233	Flattop-23	U233-MF-05	Falstaff-1*	SB-2½	ORNL-11
HEU	Godiva Tinkertoy-2	Flattop-25	Godiver	Zeus-2 UH ₃	SB-5	ORNL-10
IEU	IEU-MF-03	BIG TEN	IEU-MF-04	Zebra-8H [†]	IEU-CT-02	STACY-36
LEU					B&W XI-2	LEU-ST-02
Pu	Jezebel Jezebel-240 Pu Buttons	Flattop-Pu THOR	Pu-MF-11	HISS/HPG [†]	PNL-33	PNL-2

* Extrapolated to critical

[†] k_∞ measurement

CASES IN THE CRITICALITY VALIDATION SUITE

<u>Name</u>	Spectrum	Handbook ID	Description
Jezebel-233	Fast	U233-MET-FAST-001	Bare sphere of ²³³ U sphere of ²³³ U reflected by normal U Sphere of ²³³ U reflected by beryllium Sphere of uranyl fluoride solution enriched in ²³³ U Lattice of ²³³ U fuel pins in water Large sphere of uranyl nitrate solution enriched in ²³³ U
Flattop-23	Fast	U233-MET-FAST-006	
U233-MF-05	Fast	U233-MET-FAST-005, case 2	
Falstaff-1	Intermediate	U233-SOL-INTER-001, case 1	
SB-2½	Thermal	U233-COMP-THERM-001, case 3	
ORNL-11	Thermal	U233-SOL-THERM-008	
Godiva Tinkertoy-2 Flattop-25 Godiver Zeus-2 UH ₃ SB-5 ORNL-10	Fast Fast Fast Intermediate Intermediate Thermal Thermal	HEU-MET-FAST-001 HEU-MET-FAST-026, case C-11 HEU-MET-FAST-028 HEU-MET-FAST-004 HEU-MET-INTER-006, case 2 HEU-COMP-INTER-003, case 6 U233-COMP-THERM-001, case 6 HEU-SOL-THERM-032	Bare HEU sphere 3 x 3 x 3 array of HEU cylinders in paraffin box HEU sphere reflected by normal U HEU sphere reflected by water HEU platters moderated by graphite and reflected by copper UH ₃ cylinders reflected by depleted uranium Lattice of HEU fuel pins in water, with blanket of ThO ₂ pins Large sphere of HEU nitrate solution
IEU-MF-03	Fast	IEU-MET-FAST-003	Bare sphere of IEU (36 wt.%) Cylinder of IEU (10 wt.%) reflected by normal uranium Sphere of IEU (36 wt.%) reflected by graphite IEU (37.5 wt.%) reflected by normal U and steel Lattice of IEU (17 wt.%) fuel rods in water Cylinder of IEU (9.97 wt.%) uranyl nitrate solution
BIG TEN	Fast	IEU-MET-FAST-007	
IEU-MF-04	Fast	IEU-MET-FAST-004	
Zebra-8H	Intermediate	MIX-MET-FAST-008, case 7	
IEU-CT-02	Thermal	IEU-COMP-THERM-002, case 3	
STACY-36	Thermal	LEU-SOL-THERM-007, case 36	
B&W XI-2	Thermal	LEU-COMP-THERM-008, case 2	Large lattice of LEU (2.46 wt.%) fuel pins in borated water Sphere of LEU (4.9 wt.%) uranyl fluoride solution
LEU-ST-02	Thermal	LEU-SOL-THERM-002, case 2	
Jezebel Jezebel-240 Pu Buttons Flattop-Pu THOR PU-MF-11 HISS/HPG PNL-33 PNL-2	Fast Fast Fast Fast Fast Intermediate Thermal Thermal	PU-MET-FAST-001 PU-MET-FAST-002 PU-MET-FAST-003, case 103 PU-MET-FAST-006 PU-MET-FAST-008 PU-MET-FAST-011 PU-COMP-INTER-001 MIX-COMP-THERM-002, case 4 PU-SOL-THERM-021, case 3	Bare sphere of plutonium Bare sphere of plutonium (20.1 at.% ²⁴⁰ Pu) 3 x 3 x 3 array of small cylinders of plutonium Plutonium sphere reflected by normal U Plutonium sphere reflected by thorium Plutonium sphere reflected by water Infinite, homogeneous mixture of plutonium, hydrogen, and graphite Lattice of mixed-oxide fuel pins in borated water Sphere of plutonium nitrate solution

PURPOSE AND USE OF THE MCNP CRITICALITY VALIDATION SUITE

The MCNP Criticality Validation Suite was developed to assess the reactivity impact of future improvements to MCNP as well as changes to its associated nuclear data libraries

Suite is *not* an absolute indicator of the accuracy or reliability of a given nuclear data library, nor is it intended to be

Suite can provide a general indication of the overall performance of a nuclear data library

Suite can provide an early warning of unexpected or unintended consequences resulting from changes to nuclear data

MCNP5 CALCULATIONS

Each calculation employed 550 generations with 10,000 neutrons per generation (350 generations for SB-5 and Zebra-8H)

Results from first 50 generations were excluded from the statistics

Results therefore are based on 5,000,000 active histories for each case (3,000,000 for SB-5 and Zebra-8H)

ENDF/B-VI thermal scattering kernels (from SAB2002 library) were used where needed for JENDL-3.3 calculations, since they are not included in the JENDL-3.3 library distributed for MCNP

RESULTS FOR ²³³U BENCHMARKS

	Benchmark	Calculated k _{eff}		
Case	k _{eff}	ENDF/B-VII β-2	ENDF/B-VI	JENDL-3.3
Jezebel-233	1.0000 ± 0.0010	0.9996 ± 0.0003	0.9926 ± 0.0003	1.0041 ± 0.0003
Flattop-23	1.0000 ± 0.0014	0.9990 ± 0.0003	1.0003 ± 0.0003	0.9985 ± 0.0003
U233-MF-05	1.0000 ± 0.0030	0.9977 ± 0.0003	0.9972 ± 0.0003	1.0019 ± 0.0003
Falstaff-1	1.0000 ± 0.0083	0.9910 ± 0.0005	0.9895 ± 0.0005	0.9879 ± 0.0005
SB-2½	1.0000 ± 0.0024	1.0045 ± 0.0005	0.9964 ± 0.0005	0.9979 ± 0.0005
ORNL-11	1.0006 ± 0.0029	1.0046 ± 0.0002	0.9974 ± 0.0002	0.9989 ± 0.0002

$$\sigma < |\Delta k| \le 2\sigma$$

$$|\Delta k| > 2\sigma$$

k_{eff} for Jezebel-233 improves dramatically, and reactivity swing from Jezebel-233 to Flattop-23 is eliminated

 k_{eff} is high for SB-2½ and ORNL-11 (reduce $\overline{\mathbf{v}}$?)

JENDL-3.3 produces best result for SB-2½ and ORNL-11

RESULTS FOR HEU BENCHMARKS

	Benchmark		Calculated k _{eff}	
Case	\mathbf{k}_{eff}	ENDF/B-VII β-2	ENDF/B-VI	JENDL-3.3
Godiva	1.0000 ± 0.0010	1.0004 ± 0.0003	0.9963 ± 0.0003	1.0033 ± 0.0003
Tinkertoy-2	1.0000 ± 0.0038	1.0006 ± 0.0004	0.9973 ± 0.0003	1.0042 ± 0.0003
Flattop-25	1.0000 ± 0.0030	1.0034 ± 0.0003	1.0021 ± 0.0003	0.9974 ± 0.0003
Godiver	0.9985 ± 0.0011	1.0005 ± 0.0004	0.9948 ± 0.0003	1.0019 ± 0.0004
UH ₃	1.0000 ± 0.0047	0.9953 ± 0.0004	0.9914 ± 0.0003	0.9967 ± 0.0004
Zeus-2	0.9997 ± 0.0008	0.9966 ± 0.0003	0.9942 ± 0.0003	0.9956 ± 0.0003
SB-5	1.0015 ± 0.0028	0.9964 ± 0.0006	0.9965 ± 0.0005	0.9990 ± 0.0006
ORNL-10	1.0015 ± 0.0026	0.9996 ± 0.0002	0.9992 ± 0.0002	0.9999 ± 0.0002

$$\sigma < |\Delta k| \le 2\sigma$$

 $|\Delta k| > 2\sigma$

k_{eff} improves substantially for Godiva and UH₃ and also improves for Godiver and Zeus-2

Reactivity swing from Godiva to Flattop-25 is reduced significantly

RESULTS FOR IEU BENCHMARKS

	Benchmark	Calculated k _{eff}		
Case	k _{eff}	ENDF/B-VII β-2	ENDF/B-VI	JENDL-3.3
IEU-MF-03	1.0000 ± 0.0017	1.0022 ± 0.0003	0.9987 ± 0.0003	0.9969 ± 0.0002
BIG TEN	0.9948 ± 0.0013	0.9952 ± 0.0002	1.0071 ± 0.0003	0.9851 ± 0.0002
IEU-MF-04	1.0000 ± 0.0030	1.0078 ± 0.0003	1.0036 ± 0.0003	1.0024 ± 0.0003
Zebra-8H	1.0300 ± 0.0025	1.0189 ± 0.0002	1.0406 ± 0.0002	1.0152 ± 0.0002
IEU-CT-02	1.0017 ± 0.0044	1.0039 ± 0.0003	1.0004 ± 0.0003	1.0014 ± 0.0003
STACY-36	0.9988 ± 0.0013	0.9989 ± 0.0003	0.9986 ± 0.0003	0.9999 ± 0.0003

$$\sigma < |\Delta k| \le 2\sigma$$

$$|\Delta k| > 2\sigma$$

k_{eff} improves dramatically for BIG TEN

 $k_{\rm eff}$ is worse for IEU-MF-03 and IEU-MF-04 and drops substantially for Zebra-8H

For IEU-CT-02 and STACY-36, changes to resonance parameters offset reactivity effects of other changes for uranium isotopes

RESULTS FOR LEU BENCHMARKS

	Benchmark	(Calculated k _{eff}	
Case	k _{eff}	ENDF/B-VII β-2	ENDF/B-VI	JENDL-3.3
B&W XI-2	1.0007 ± 0.0012	1.0012 ± 0.0003	0.9968 ± 0.0003	0.9991 ± 0.0003
LEU-ST-02	1.0024 ± 0.0037	0.9954 ± 0.0003	0.9953 ± 0.0003	0.9963 ± 0.0003

$$\sigma < |\Delta k| \le 2\sigma$$

$$|\Delta k| > 2\sigma$$

k_{eff} improves substantially for B&W XI-2, which eliminates need for *ad hoc* adjustment to ²³⁸U resonance integral (used in many nuclear data libraries since early 1970s)

For LEU-ST-02, changes to resonance parameters for ²³⁵U and ²³⁸U offset reactivity effects of other changes

RESULTS FOR PU BENCHMARKS

		Calculated k _{eff}		
Case	Benchmark K _{eff}	ENDF/B-VII β-2	ENDF/B-VI	JENDL-3.3
Jezebel	1.0000 ± 0.0020	1.0001 ± 0.0003	0.9971 ± 0.0003	0.9966 ± 0.0004
Jezebel-240	1.0000 ± 0.0020	0.9996 ± 0.0003	0.9980 ± 0.0003	1.0009 ± 0.0004
Pu Buttons	1.0000 ± 0.0030	0.9988 ± 0.0003	0.9962 ± 0.0003	0.9958 ± 0.0004
Flattop-Pu	1.0000 ± 0.0030	0.9999 ± 0.0003	1.0016 ± 0.0003	0.9904 ± 0.0003
THOR	1.0000 ± 0.0006	0.9993 ± 0.0003	1.0057 ± 0.0003	1.0066 ± 0.0003
Pu-MF-11	1.0000 ± 0.0010	1.0003 ± 0.0003	0.9966 ± 0.0004	0.9982 ± 0.0003
HISS/HPG	1.0000 ± 0.0110	1.0116 ± 0.0002	1.0106 ± 0.0003	1.0134 ± 0.0003
PNL-33	1.0024 ± 0.0021	1.0066 ± 0.0003	1.0029 ± 0.0003	1.0069 ± 0.0003
PNL-2	1.0000 ± 0.0065	1.0045 ± 0.0005	1.0033 ± 0.0005	1.0062 ± 0.0005

 $\sigma < |\Delta k| \le 2\sigma$

 $|\Delta k| > 2\sigma$

Striking improvement in k_{eff} for fast cases but PNL-33 gets worse Reactivity increases for HISS/HPG, PNL-33, and PNL-2

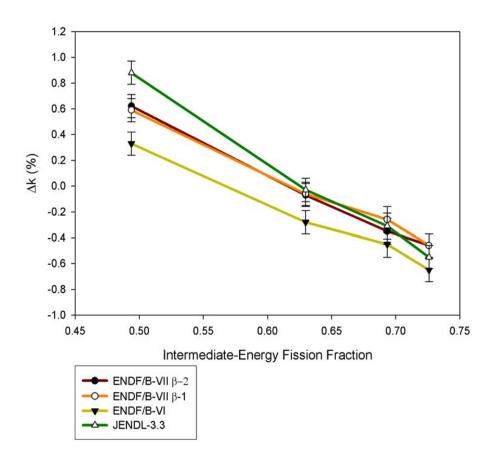
SUMMARY OF RESULTS FOR MCNP CRITICALITY VALIDATION SUITE

Range	ENDF/B-VII	ENDF/B-VI	JENDL-3.3
$ \Delta k \leq \sigma$	18	13	13
$\sigma < \Delta k \le 2\sigma$	10	9	9
Δk > 2σ	3	9	9

Substantial improvements for bare metal spheres (Jezebel-233, Godiva, and Jezebel), BIG TEN, UH₃, THOR, Pu metal sphere in water (Pu-MF-011), and LEU lattice (B&W XI-2)

ORNL resonance parameters improve results for Godiver, ORNL-10, IEU-CT-03, STACY-36, B&W XI-2, and LEU-ST-02

OTHER CRITICALITY BENCHMARKS


Name	Spectrum	Handbook ID	Description
Zeus-1 Zeus-2 Zeus-3 Zeus-4	Intermediate Intermediate Intermediate Intermediate	HEU-MET-INTER-006, case 1 HEU-MET-INTER-006, case 2 HEU-MET-INTER-006, case 3 HEU-MET-INTER-006, case 4	HEU platters moderated by graphite and reflected by copper HEU platters moderated by graphite and reflected by copper HEU platters moderated by graphite and reflected by copper HEU platters moderated by graphite and reflected by copper
Np Sphere	Fast	SPEC-MET-FAST-008	Neptunium sphere reflected by HEU shells
Unmod Zeus	Fast	HEU-MET-FAST-073	HEU platters reflected by copper
PNL-1 PNL-3 PNL-4 PNL-5 PNL-6 PNL-8 PST-9	Thermal Thermal Thermal Thermal Thermal Thermal Thermal	PU-SOL-THERM-021, case 7 PU-SOL-THERM-011, case 18-1 PU-SOL-THERM-011, case 18-6 PU-SOL-THERM-011, case 16-5 PU-SOL-THERM-021, case 3 PU-SOL-THERM-021, case 2 PU-SOL-THERM-009, case 3a	Unreflected 14-inch sphere of plutonium nitrate solution Unreflected 18-inch sphere of plutonium nitrate solution Unreflected 18-inch sphere of plutonium nitrate solution Unreflected 16-inch sphere of plutonium nitrate solution Unreflected 15.2-inch sphere of plutonium nitrate solution Unreflected 15.2-inch sphere of plutonium nitrate solution Unreflected 48-inch sphere of plutonium nitrate solution
PNL-30 PNL-31 PNL-32 PNL-33 PNL-34 PNL-35	Thermal Thermal Thermal Thermal Thermal Thermal	MIX-COMP-THERM-002, case 30 MIX-COMP-THERM-002, case 31 MIX-COMP-THERM-002, case 32 MIX-COMP-THERM-002, case 33 MIX-COMP-THERM-002, case 34 MIX-COMP-THERM-002, case 35	Lattice of 469 MOX pins (2 wt.% PuO_2) in water (1.7 PPM) Lattice of 761 MOX pins (2 wt.% PuO_2) in water (687.9 PPM) Lattice of 195 MOX pins (2 wt.% PuO_2) in water (0.9 PPM) Lattice of 761 MOX pins (2 wt.% PuO_2) in water (1090.4 PPM) Lattice of 161 MOX pins (2 wt.% PuO_2) in water (1.6 PPM) Lattice of 689 MOX pins (2 wt.% PuO_2) in water (767.2 PPM)
HST-4 HST-4	Intermediate Thermal	HEU-SOL-THERM-004, cases 1-2 HEU-SOL-THERM-004, cases 3-6	Reflected spheres of HEU solution in heavy water Reflected spheres of HEU solution in heavy water
HST-20	Thermal	HEU-SOL-THERM-020, cases 1-5	Unreflected cylinders of HEU solution in heavy water

ZEUS HEU-GRAPHITE BENCHMARKS

⇒ Cross sections for ²³⁵U in the unresolved resonance region should be re-examined

NEPTUNIUM SPHERE REFLECTED BY HEU

Benchmark		Calculated k _{eff}	
k _{eff}	ENDF/B-VII β-2	ENDF/B-VI	JENDL-3.3
1.0019 ± 0.0036	0.9954 ± 0.0003	0.9889 ± 0.0002	0.9967 ± 0.0002

$$\sigma < |\Delta k| \le 2\sigma$$

$$|\Delta k| > 2\sigma$$

 \Rightarrow Fast cross sections for ²³⁷Np should be reviewed

UNMODERATED ZEUS BENCHMARK

Source	k _{eff}	Δk
Experiment	1.0008 ± 0.0015	
ENDF/B-VII β-2	1.0119 ± 0.0003	0.0111 ± 0.0015
ENDF/B-VI	1.0080 ± 0.0003	0.0072 ± 0.0015
JENDL-3.3	1.0242 ± 0.0003	0.0234 ± 0.0015

$$|\Delta k| > 4\sigma$$

Benchmark contains no moderator and therefore has a fast spectrum

All of the calculated results differ from the experimental value for k_{eff} by more than 4 standard deviations

Results for k_{eff} with ENDF/B-V Cross Sections for Copper

Source	k _{eff}	Δk
Experiment	1.0008 ± 0.0015	
ENDF/B-VII β-2	1.0007 ± 0.0003	-0.0001 ± 0.0015
ENDF/B-VI	0.9968 ± 0.0003	-0.0040 ± 0.0015
JENDL-3.3	1.0001 ± 0.0003	-0.0007 ± 0.0015

 $|\Delta k| > 2\sigma$

Both JENDL-3.3 and ENDF/B-VII β -2 now produce results for k_{eff} that are within a single standard deviation of the experimental value

Differences between ENDF/B-V and ENDF/B-VI Cu cross sections have little net reactivity impact on previous Zeus benchmarks, which have intermediate spectra

⇒ Fast cross sections for Cu should be reviewed

Unreflected Spheres of Plutonium-Nitrate Solutions

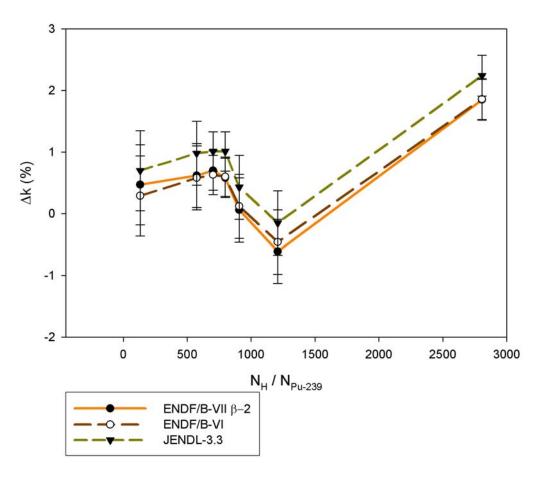
	H / ²³⁹ Pu		Calculated k _{eff}		
Case	Atom Radio	Benchmark k _{eff}	ENDF/B-VII β-2	ENDF/B-VI	JENDL-3.3
PNL-6	131.83	1.0000 ± 0.0065	1.0047 ± 0.0005	1.0029 ± 0.0005	1.0070 ± 0.0004
PNL-5	574.52	1.0000 ± 0.0052	1.0062 ± 0.0004	1.0058 ± 0.0004	1.0098 ± 0.0004
PNL-1	701.70	1.0000 ± 0.0032	1.0070 ± 0.0004	1.0066 ± 0.0004	1.0101 ± 0.0004
PNL-8	797.62	1.0000 ± 0.0032	1.0058 ± 0.0004	1.0060 ± 0.0004	1.0101 ± 0.0004
PNL-4	907.13	1.0000 ± 0.0052	1.0006 ± 0.0004	1.0012 ± 0.0004	1.0043 ± 0.0004
PNL-3	1207.8	1.0000 ± 0.0052	0.9939 ± 0.0004	0.9954 ± 0.0004	0.9985 ± 0.0004
PST-9	2806.8	1.0003 ± 0.0033	1.0188 ± 0.0002	1.0190 ± 0.0002	1.0226 ± 0.0002

$$\sigma \leq |\Delta k| \leq 2\sigma$$

 $|\Delta k| > 2\sigma$

ENDF/B-VII β-2 results are very similar to those from ENDF/B-VI

All differences greater than 1 σ are high, except for PNL-3


Is PST-9 (case 3a) a valid data point or an outlier?

Unreflected Spheres of Plutonium-Nitrate Solutions

⇒ Thermal cross sections for ²³⁹Pu should be reviewed

PNL MOX Lattices

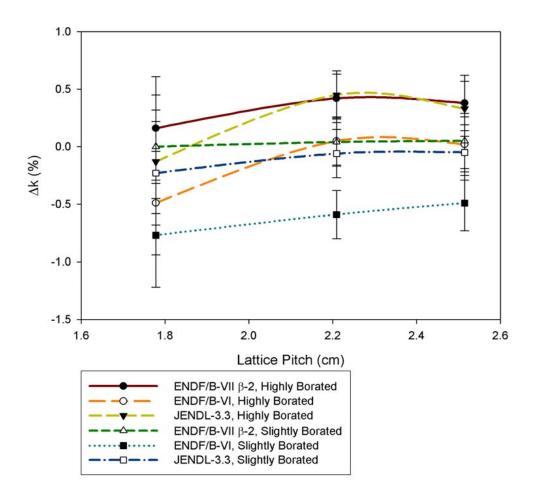
	Dital	Soluble			Calculated k _{eff}	
Case	Pitch (cm)	Boron (PPM)	Benchmark k _{eff}	ENDF/B-VII β-2	ENDF/B-VI	JENDL-3.3
PNL-30	1.77800	1.7	1.0010 ± 0.0059	1.0010 ± 0.0003	0.9933 ± 0.0003	0.9987 ± 0.0003
PNL-31	1.77800	687.9	1.0009 ± 0.0045	1.0025 ± 0.0003	0.9960 ± 0.0004	1.0008 ± 0.0004
PNL-32	2.20914	0.9	1.0024 ± 0.0029	1.0028 ± 0.0003	0.9965 ± 0.0004	1.0018 ± 0.0003
PNL-33	2.20914	1090.4	1.0024 ± 0.0021	1.0066 ± 0.0003	1.0029 ± 0.0003	1.0069 ± 0.0003
PNL-34	2.51447	1.6	1.0038 ± 0.0022	1.0043 ± 0.0003	0.9989 ± 0.0003	1.0033 ± 0.0003
PNL-35	2.51447	767.2	1.0029 ± 0.0024	1.0067 ± 0.0003	1.0031 ± 0.0003	1.0062 ± 0.0004

$$\sigma < |\Delta k| \le 2\sigma$$

 $|\Delta k| > 2\sigma$

Overall, ENDF/B-VII β-2 produces best results

None of the ENDF/B-VII β -2 values for k_{eff} are lower than the corresponding mean benchmark value, and two are higher by more than 1 standard deviation


All 3 libraries produce different shapes for borated and unborated cases

PNL MOX Lattices

 \Rightarrow Thermal cross sections for 239 Pu probably should be reviewed

RESULTS FOR HEAVY-WATER SOLUTIONS

		Calculated k _{eff}						
Case	Benchmark k _{eff}	ENDF/B-VII β-2 + JENDL-3.3 ² H	ENDF/B-VII β-2	JENDL-3.3				
Reflected Spheres (HEU-SOL-THERM-004)								
1	1.0000 ± 0.0033	0.9968 ± 0.0004	0.9861 ± 0.0004	0.9918 ± 0.0004				
2	1.0000 ± 0.0036	0.9922 ± 0.0004	0.9812 ± 0.0004	0.9873 ± 0.0004				
3	1.0000 ± 0.0039	0.9985 ± 0.0004	0.9886 ± 0.0004	0.9979 ± 0.0004				
4	1.0000 ± 0.0046	1.0140 ± 0.0004	0.9911 ± 0.0004	0.9971 ± 0.0004				
5	1.0000 ± 0.0052	0.9993 ± 0.0004	0.9886 ± 0.0004	0.9956 ± 0.0004				
6	1.0000 ± 0.0059	0.9952 ± 0.0004	0.9847 ± 0.0005	0.9913 ± 0.0004				
Unreflected Cylinders (HEU-SOL-THERM-020)								
1	0.9966 ± 0.0116	1.0036 ± 0.0005	0.9916 ± 0.0005	1.0006 ± 0.0005				
2	0.9956 ± 0.0093	1.0103 ± 0.0005	0.9986 ± 0.0005	1.0066 ± 0.0005				
3	0.9957 ± 0.0079	1.0186 ± 0.0005	1.0084 ± 0.0005	1.0149 ± 0.0005				
4	0.9955 ± 0.0078	1.0161 ± 0.0005	1.0038 ± 0.0005	1.0160 ± 0.0005				
5	0.9959 ± 0.0077	1.0230 ± 0.0005	1.0127 ± 0.0005	1.0167 ± 0.0005				

 $\sigma < |\Delta k| \le 2\sigma$

 $|\Delta k| \ge 2\sigma$

CONCLUSIONS

Overall, ENDF/B-VII β-2 produces major reactivity improvements relative to ENDF/B-VI and JENDL-3.3

ENDF/B-VII β-2 produces dramatic improvements for bare metal spheres, BIG TEN, UH₃, THOR, and Pu sphere in water

Reactivity swings from bare spheres to corresponding systems reflected by normal uranium are eliminated or substantially reduced

Need for ad hoc adjustment to ²³⁸U resonance integral may be eliminated

Improvements still are needed, particularly for:

- 235U cross sections in the unresolved resonance region
- neptunium cross sections
- fast copper cross section
- thermal plutonium (²³⁹Pu) cross sections
- angular scattering distribution for ²H (probably)

