Data Testing for ENDF/B-VIIβ2

A. C. (Skip) Kahler & R. E. MacFarlane Los Alamos National Laboratory

Presented at the CSEWG Validation Meeting at Brookhaven National Laboratory

June 27, 2006

Introduction

- Data testing at LANL has concentrated on executing MCNP5 calculations for a variety of critical benchmarks defined in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) Handbook.
 - xxx-MET-FAST (HEU, PU, MIX; bare, water and/or polyethylene reflected, metallic reflectors);
 - xxx-SOL-THERM (HEU, LEU or Pu; bare and water reflected);
 - LEU-COMP-THERM (water moderated, with and without metallic reflectors).
- Eigenvalues are determined based upon tracking 25 million to 50 million neutron histories.
 - The uncertainty in the MCNP5 eigenvalue is typically less than 25 pcm.

- Have calculated critical configurations from a suite of seven LEU-COMP-THERM evaluations representing experimental data from five countries:
 - LEU-COMP-THERM-001 (2.35 w/o²³⁵U, United States PNL)
 - LEU-COMP-THERM-002 (4.31 w/o²³⁵U, United States PNL)
 - LEU-COMP-THERM-006 (2.6 w/o ²³⁵U, Japan)
 - LEU-COMP-THERM-007 (4.74 w/o²³⁵U, France, Valduc)
 - LEU-COMP-THERM-022 (9.8 w/o ²³⁵U, Russia Kurchatov)
 - LEU-COMP-THERM-024 (9.8 w/o²³⁵U, Russia Kurchatov)
 - LEU-COMP-THERM-039 (4.74 w/o²³⁵U, France, Valduc)

LEU-COMP-THERM-001 Eigenvalues for Various Cross Section Data Sets

LEU-COMP-THERM-002 Eigenvalues for Various Cross Section Data Sets

LEU-COMP-THERM-006 Eigenvalues for Various Cross Section Data Sets

LEU-COMP-THERM-007 Eigenvalues for Various Cross Section Data Sets

LEU-COMP-THERM-022 Eigenvalues for Various Cross Section Data Sets

LEU-COMP-THERM-024 Eigenvalues for Various Cross Section Data Sets

LEU-COMP-THERM-039 Eigenvalues for Various Cross Section Data Sets

LCT Benchmark Eigenvalues for Various **ENDF/B Cross Section Data Sets** 1.0250 LCT1 (2.35 w/o, USA - PNL) LCT2 (4.31 w/o, USA - PNL) 1.0200 □LCT6 (2.6 w/o, Japan) LCT7 (4.74 w/o, France - Valduc) LCT22 (9.8 w/o, Russia - Kurchatov) 1.0150 LCT24 (9.8 w/o, Russia - Kurchatov) LCT39 (4.74 w/o, France - Valduc) 1.0100 Normalized Eigenvalue 1.0050 1.0000 0.9950 P 꿉 П ß 0.9900 0.9850 Open square data points are calculated with ENDF/B-VI.8 cross sections. Closed square data points are calculated with ENDF/B-VII

ß
1 cross sections. 0.9800 Closed circle data points are calculated with ENDF/B-VIIB2 cross sections. 0.9750 UNCLASSIFIED NATIONAL LABORATORY

- EST 1943

- LEU-COMP-THERM eigenvalues are generally low (by 500 to 1000 pcm) with ENDF/B-VI.8 cross sections.
 - Average eigenvalue for 45 critical configurations from seven LEU-COMP-THERM evaluations is 0.9945(5).
- LEU-COMP-THERM eigenvalues have increased to near unity with ENDF/B-VIIβ2 cross sections.
 - Average eigenvalue for 43 critical configurations from seven LEU-COMP-THERM evaluations is 1.0005(4).

- Homogenous solution benchmarks have been correlated against Above-Thermal Leakage Fraction (ATLF).
- The benchmark suite consists of 42 critical configurations defined in ten HEU-SOL-THERM evaluations.
 - All Rocky Flats and ORNL benchmarks used on past data testing efforts are now incorporated in the ICSBEP Handbook.
- HEU-SOL-THERM benchmark eigenvalue results are supplemented with calculations of Japanese LEU-SOL-THERM benchmarks.

Calculated Eigenvalues with ENDF/B-VI.8 Cross Sections

- ENDF/B-VI.8 HST & LST eigenvalues are very good; average is near unity with no apparent trend.
 - The average eigenvalue for 42 HST critical configurations from ten HST evaluations is 1.0002(7); and from 62 HST & LST critical configurations is 1.0001(5).
- ENDF/B-VIIβ2 HST & LST eigenvalues are very good; average is near unity with no apparent trend.
 - The Above-Thermal Leakage Fraction (ATLF) correlation is insensitive to weighting of the individual HST eigenvalues.
 - The average eigenvalue for 42 HST critical configurations from ten HST evaluations is 1.0004(7); and from 62 HST & LST critical configurations is 1.0003(5).

"LANL"-MET-FAST Benchmarks

- "Traditional" LANL Fast Benchmarks are significantly improved with ENDF/B-VIIβ2 cross sections
 - HEU-MET-FAST-001 (Godiva)
 - HEU-MET-FAST-028 (Flattop-28)
 - IEU-MET-FAST-007 (Big-10)
 - PU-MET-FAST-001 (Jezebel)
 - PU-MET-FAST-002 (Jezebel-240)
 - PU-MET-FAST-006 (Flattop-Pu)
 - PU-MET-FAST-008c (Thor)
 - U233-MET-FAST-001 (Jezebel-23)
 - U233-MET-FAST-006 (Flattop-23)

"LANL"-MET-FAST Benchmarks

- Other xxx-MET-FAST Benchmarks
 - HEU-MET-FAST bare systems
 - HEU-MET-FAST-008
 - HEU-MET-FAST-018
 - HEU-MET-FAST-051
 - HEU-MET-FAST reflected systems
 - HEU-MET-FAST-004 (water)
 - HEU-MET-FAST-007, -011 (polyethylene)
 - HEU-MET-FAST-012, -022 (aluminum)
 - HEU-MET-FAST-013, -021 (steel)
 - HEU-MET-FAST-027, -057 (lead)
 - HEU-MET-FAST-014 (uranium)
 - HEU-MET-FAST-041, -066, -077 (beryllium)

- Other xxx-MET-FAST Benchmarks (con't)
 - PU-MET-FAST bare systems
 - PU-MET-FAST-022
 - PU-MET-FAST Reflected Systems
 - PU-MET-FAST-011 (water)
 - PU-MET-FAST-020 (uranium)
 - PM-MET-FAST-019 (beryllium)
 - PU-MET-FAST-023 (graphite)
 - PU-MET-FAST-024 (polyethylene)
 - PU-MET-FAST-035 (lead)
 - PU-MET-FAST-009 (aluminum)
 - PU-MET-FAST-025, -026 (steel)

NNS

HEU-MET-FAST-007 Benchmark

HEU-MET-FAST-007 Benchmark

HEU-MET-FAST-007 Benchmark

- Have calculated critical configurations from a suite of nine PU-SOL-THERM evaluations:
 - PU-SOL-THERM-001 (11.5" diameter water reflected sphere)
 - PU-SOL-THERM-002 (12" diameter water reflected sphere)
 - PU-SOL-THERM-003 (13" diameter water reflected sphere)
 - PU-SOL-THERM-004 (14" diameter water reflected sphere)
 - PU-SOL-THERM-005 (more 14" diameter ...)
 - PU-SOL-THERM-006 (15" diameter water reflected sphere)
 - PU-SOL-THERM-009 (48" diameter sphere, bare)
 - PU-SOL-THERM-011 (16", 18" diameter spheres, bare)
 - PU-SOL-THERM-018 (24" diameter water reflected cylinder)
 - To be published in the 2006 edition of the ICSBEP Handbook)

xxx-MET-FAST Benchmarks

- Fast, beryllium reflected benchmarks
 - HEU-MET-FAST-041
 - HEU-MET-FAST-066
 - HEU-MET-FAST-077
 - To be published in the 2006 edition of the ICSBEP Handbook
 - MMF-MET-FAST-007

HEU-MET-FAST-041 Eigenvalues for Various Cross Section Data Sets

MIX-MET-FAST-007 Eigenvalues for Various Cross Section Data Sets

1.0150 ENDF/B-VI.8 **Δ** ENDF/B-VIIβ2 1.0100 1.0050 Normalized Eigenvalue .0000 0.9950 0.9900 Error bars denote the 1σ experimental uncertainty, per the ICSBEP Handbook. MCNP5 eigenvalues are based upon tracking 50M neutron histories (10,000 histories x 5050 cycles; omitting the first 50 cycles). 0.9850 0 5 10 15 20 25 Beryllium Reflector Thickness, cm UNCLASSIFIED NATIONAL LABORATORY

EST. 1943

HEU-MET-FAST-066 Eigenvalues for Various Cross Section Data Sets

HEU-MET-FAST-077 Eigenvalues for Various Cross Section Data Sets

- Impact of revised beryllium cross sections is questionable, as the
 - revised beryllium cross sections have lead to needed reductions in the calculated eigenvalues for HEU-MET-FAST-041 and MIX-MET-FAST-007 benchmarks.
 - but the revised beryllium cross sections have lead to un-needed reductions in calculated eigenvalues for HEU-MET-FAST-066 and HEU-MET-FAST-077 benchmarks.
 - More work is needed in this area.

Lead Reflected Benchmarks

- Benchmarks come from HEU, PMF and LCT categories
 - HEU-MET-FAST-008 versus HEU-MET-FAST-027
 - PU-MET-FAST-022 versus PU-MET-FAST-035
 - LEU-COMP-THERM-002 versus LEU-COMP-THERM-010
 - HEU-MET-FAST-057 in a class by itself \otimes

Lead Reflected Benchmarks

Lead Reflected Benchmarks

- Calculated eigenvalues are a mixed bag, with some improvements seen in some HMF and PMF benchmarks but significant deviations from unity are still seen in HMF57 and LCT10.
 - More work is needed in this area.

HEU/D₂O Benchmarks

- HEU-SOL-THERM-004
 - Heavy water reflected benchmarks
- HEU-SOL-THERM-020
 - Heavy water unreflected benchmarks
- Significant biases are observed in calculated eigenvalues for both ENDF/B-VI.8 and ENDF/B-VIIβ2 cross section data sets.
 - Unreflected benchmark eigenvalues exhibit an increasing trend with increasing D/²³⁵U.

HEU/D₂O Benchmarks

²³³U-SOL-THERM Benchmarks

- ²³³U homogeneous solution benchmark suite includes spherical and cylindrical solution containers.
 - U233-SOL-THERM-001 (unreflected sphere)
 - U233-SOL-THERM-008 (unreflected sphere)
 - U233-SOL-THERM-016 (unreflected cylinder)
 - U233-SOL-THERM-017 (water reflected cylinder)
- ²³³U nu-bar in the data set submitted for ENDF/B-VIIβ2 testing does NOT match the Standards recommendation.
 - Thermal nu needs to be decreased by ~0.3% to match the Standard.

²³³U-SOL-THERM Benchmarks

Comparison Between MCNP5 (LANL) and Tripoli 4.4.1 (Sublet)

- Excellent agreement is observed between MCNP5 and Tripoli eigenvalues for a variety of benchmarks.
 - Previous differences in LEU-COMP-THERM-006 have been attributed to slightly different fuel compositions.
 - Previous differences in selected HEU-SOL-THERM-001 eigenvalues are attributed to different normalizations.

Comparison of MCNP5 (Kahler/ MacFarlane) and Tripoli (Sublet)

