Energy Release per Fission Format Change (File 1, Section 458)

A. C. (Skip) Kahler, M. B. Chadwick & R. E. MacFarlane Los Alamos National Laboratory

> Presented at the CSEWG Validation Meeting at Brookhaven National Laboratory

> > June 27, 2006

1 / 458

- File 1/458 currently consists of a initial "CONT" record, an 18 element "LIST" record (NPL=18, N2=9, L1=L2=0) and a "SEND" record.
 - The 18 element "LIST" records contains nine values and their uncertainties, X and ΔX , for
 - ET = Total energy release per fission;
 - EFR = Kinetic energy of the fragments;
 - ENP = Kinetic energy of the prompt neutrons;
 - END = Kinetic energy of the delayed neutrons;
 - EGP = Prompt photon energy;
 - EGD = Delayed photon energy;
 - EB = Delayed Beta decay energy;
 - ENU = Neutrino energy;
 - ER = Total "useful" energy, ET ENU.

1 / 458

- Dave Madland, in "Total Prompt Energy Release in the Neutron-Induced Fission of ²³⁵U, ²³⁸U and ²³⁹Pu", Nucl. Phys. <u>A772</u> (2006)113, provides energy dependent polynomial fits for some of these data.
- Therefore, consider past data to simply represent the zeroth order term (and its uncertainty) in an Nth order polynomial.

1 / 458

- Expand the definition of the LIST control record so that L2 specifies the order of the subsequent polynomial for <u>all</u> energy components.
 - L2 = polynomial order (zero in all existing files);
 - N2 = 9 * (L2+1) = number of polynomial coefficients;
 - NPL = 2 * N2 = number of data items (coefficients plus uncertainties).
- For example, EFR and Δ EFR expand to become EFR₀, EFR₁, ..., Δ EFR₀, Δ EFR₁, ... where

- Fission Fragment energy = $EFR_0 + EFR_1 * E + ...$

UNCLASSIFIED

