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MANTRA: AN INTEGRAL REACTOR PHYSICS
EXPERIMENT TO INFER ACTINIDE CAPTURE CROSS-
SECTIONS FROM THORIUM TO CALIFORNIUM WITH

ACCELERATOR MASS SPECTROMETRY

FCRD group meeting, June 24-25, 2010, Port Jefferson, NY

G. Youinou?, H. Walk?, R. Vondrasek?!, M. Salvatores24, B. Scott!, E. Rehm?,
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C. McGrath?, S. Kondrashev?, F. Kondev?, G. Imel3, C. Glass?, C. Clark?

1 Argonne National Laboratory
2 |daho National Laboratory
3 ldaho State University

4 CEA-Cadarache
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Principle of the experiment:

1 — Irradiate very pure actinide material (a few mg) in well-characterized neutron spectra in the
Advanced Test Reactor (ATR) at INL

N 232Th’ 235U’ 236U’ 238U’ 237Np’ 238Pu’ 239Pu’ 240Pu’ 241Pu’ 242Pu’ 241Am’ 243Am’ 244Cm and 248Cm

2 — Measure the atom densities of the transmutation products with Accelerator Mass
Spectrometry at the ATLAS facility at ANL

— detection limit of AMS is orders of magnitude lower than that of standard MS (~10-1?)

— more transmutation products can be measured

— more neutron cross-sections to be inferred from a single sample

3 — Measure the neutron fluence in the actinide samples

— 148Nd and 137Cs in 235U monitors

4 — Infer the effective neutron capture cross-sections from results of step 2 and 3

~e
I
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Relation between measured and inferred quantities

dN dfft O _ Nz sz, e

% = +NZ(1) 55, (1) 4() ~ N2, (0) G2 (1) 900)
% —ENZL() 5 (0 40— N, () 52.p () 400
% SN2 (1) 55,00 (1) 40— N (1) 52,2 () 4(0)

Inferred quantities Measured quantities

[ 5.4 (E) o(E 1) dE
jgo(E,t)dE

AA+k

T (t) = = effective neutron capture cross-section

Oay =0, +E§+k + = effective neutron absorption cross-section + natural decay
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Relation between measured and inferred quantities

Example of A+1, A+2 and A+3 build-up from successive captures on mass number A

NA(T)=N,(0)e " ~N,(0)[L-Ga4 T]

_52$T e_&2+1§$T

NA+1(T):NA(O)E,§[~ea P J A(O) ¢T

Opt1 =O0p Op—0py

—C—c e—&zqu e_a—_zﬂ&-l— e—5,§+2¢7T
N,,2(T)=NA(0) 0,04, ~a = ~av T ~ +
O™ O-A)(O-A+2 op) ( O-A+1)(O-A+2 O p1) ( O-A+2)(O-A+1 O a2
1
~—N (O)O-A O-A 1 ¢ T]
2 +.
e_gng e_giﬂg-r
ot —o)Nod, -o) ok .-0o —-o2 Wod, -0 ok .o
A+3(T) NA(O) GAO'XHEXJFZ ( A+l A)( A+2 . A)( A+3 A) ( A+1)( A+2 _A+1)( A+3 A+1)
e_O-A+2¢T e O'A+3¢T
— +
( O-A+2)(O- A1~ O A+2)(O- A3~ Oncz) ( -0 A+3)(O-A+1 O-A+3)(O-A+2 O3
1 _
~=N,(0)Tx Ony Oro[#TT
6 A +1 ~ A+2

————
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Relation between measured and inferred quantities

¢ ~ [NA+1(|-)]E _[NA+1(O)]m
* 4TI,

EC ~9 [NA+2 (r)]m _[NA+2 (0)]nl
(N (M, + N O[T,

e [N s (D =[N (O) (Noa (] + [N (O)],) _
[[NA+1cr)] ([N a2 (M1 + 2[Ns 5 O]+ [N OV (21N, 5 (T + [N (0)1,)] [4 T,

[NA+n]m
NA+n
(Nainln = [NA])
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Relation between measured and inferred quantities

If N (T) >> N (0) the expressions are simpler and the inference is less dependant on the precision of
the measurement of the atom densities. Relatively easy with thermal or epithermal neutron spectra
(o © ~ few 10 to few 100 barns). More difficult with fast neutron spectra ( &~ 1 barn).

— High neutron fluence

— High purity samples
—C __ [NA+1(r)]m _[NA+1(O)]m —C _ [NA_+1(T)]m
o 71, = T,
E,gﬂ ~9 [NA+2 (r)]m - [NA+2 (O)]m —c _ [NA+2 (T)]

N+ N LT = % 2y DL T,

= ([N s (o =[N O ) (N s (Dl + [N (O)],) _
2 N Ol (Tl + 20N O )+ N O (21N, (D], + [No o O [T,
I 5/(;2 _ [NA+3 (T )]

[NA+2 (M, [T,

~~e
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Best sample candidates for ATLAS = Heaviest long-lived isotope in each element (U, Np,
Pu, Am, Cm) because A+1, A+2... contamination can be kept at a much lower level

U-235

U236
U237 -—— Np 237
6,8d
Np-238 J= = =P Pu-238 [€ = == = == = == = == = =——
o >|j—r|< 1
U-239 ———>|Np239——— U-239 e,
23,5mn 23d rl‘ " "
Pu-240 ====="=“=A
Pu-241 = = =P Am-241 !! ” ”
144y "
1% 89% 163||d " ”
e For these samples the high sensitivity of ATLAS @@ ] e — - —(cmziz] |
. . . 1 84% (16 h)
Is an important asset because of a low background i e
Pu-243 = = =P>§ Am-243
¢ WWhen high background, precision matters more o ;
than sensitivity T o
| T
n, gamma u

= == ==p Beta minus

== =)» alpha

...... S |
Cm-249 == == ==p Bk-249 —_— Cf-249 .
” 65 min 320d

Bk-250 == == = Cf-250 |—— =” z

ﬂ "
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Neutron Fluence

Determination of the neutron fluence by the Nd-148 and Cs-137 method in U-235 monitors

Us || Th2 us us US (| Np7 || US || Pu2 || US ||Am3 || US |[Cm8 | US

Nd-148/U-235

Nng(T)] 1
Nys (1) y NdS E[{

neutrar fluence

measured calculated

$T

v

~®
1




Reactor:

. - - Thermal power 250 My,
A Brief Description of ATR Paner densiy omaL
Maximum thermal neutron flux 1.0610°° nfcm®-sec
Mairnum fast fiux 5 0x10"™ nicr-sec”
Murmber of flux traps g
| cm.gl qu.4| {JN-5| u“..al cm.]rl Mumber of experiment positions 55"
Core:
OM-1 — ON-2 .
- " e . —— T Mumber of fuel assemblies 40
A" Positions Active length of assemblies 4 fest

Mumber of fuel plates per assembly 19
Uranium-23% content of an assembl 1,075 g

Total core load 43 kgd
Coolant:
Design pressure 2.7 Wpa (390 psig)
‘B" Positions Design temperature 115°C (240°F)

Reactor Coolant:

Light water maximum coolant flowre  3.09 s {49,000 gpm)
Coolant temperature (operating) <52°C (125°F)inlet, 71°C (160°F) outlet

"H” Positions

“I' Positions

|0$-3 05-4| 055 09-6‘ 0s-7

\Ii “ l ldaho National Laboratory




Samples irradiation in ATR

| uu-:a| au-4| ou-5| un-a| uu-?|

‘A" Positions

‘B" Positions

“H" Positions

“I' Positions

|'I:IB-3 05-4| 055 OB-G| 0s-7

ldaho National Laborator

Positions:
— B9, 10 and 11

Neutron filters:
— 1 mm Cadmium

— 5 mm Boron (70% 1°B)
— 10 mm Boron (70% 1°B)

Fuel

Irradiation:
start February 2011

Flux . . . .
guidd Time of irradiation:

necd — S0 days for Cd-filter
— 100 days for B-filtered

MNeck Shim
Rod Housing

Control drums

In-pile tubes




End Plug

Samples irradiation in ATR

Rodlet Tube

0.3760

Example of a boron filtered setup

Vial BN Water Gap
B4C
ID 0.681"

oD 1.311"

=—0.1940 —=
Water Gap
1.0000 0.2480 0.6240

%% L
7
v

Aluminum
ID 0.619"
oD 0.679"

Aluminum
ID 1.313"
OD 1.440"

AFCI Style Capsule
OD 0.354"

Large "B" Hole
1.500"

Actinide sample

(C. Clark, INL, personal communication)




Samples irradiation in ATR — Neutron filters

U The Cd neutron filter can be manufactured at the INL.

O Ceradyne, Inc identified as proposed vendor for B4C filters (70% 1°B)
— SoW for B4C procurement to be sent before end of June (5-6 month lead time)

@1.340 £0.002
20.936 +0.002
0.530 +0.003

0.530 +0.003

& &

Y/

L 30°

(1.800) (1.800)




Effect of neutron filters on the neutron spectrum in the samples

1.E+14 -
1 mm cadmium in position B-9
7 F~1.8710" n.cm?s®
1.E+13 1 | s
b ]
g | //
L A
S 1.E+12 -
x i / /
=] i
[T 1 /
- , /
o
S 1.E+11 A
< P/ /
5 mm boron (70% B10) in position B-10 /
F~10%ncm?st—o
y j
1.E+10 ]
10 mm boron (70% B10) in position B-11
F ~9010" n.cm™?s™
1E+09 T T T T T T T T mmay L o R L o A T T T T T T T TTTT
1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08
Neutron Energy (eV)
~
. |d0h0 NoHona| Laborcjror (C. Glass, INL, personal communication)




Effect of neutron filters on the neutron spectrum in the samples

1.E+14 4
o | | |

1 mm cadmium in position B-9

F~ 18010 n.cm?.s™?
1.E+13 - ‘

wnl
e/ / \
"/ / ‘,

5 mm boron (70% B10) in position B-10 f"'/ |
F~10"“ncm?si—m—

/

Neutron Flux (n/cm2.s)

1.E+10 { V4 /
/ 10 mm boron (70% B10) in position B-11
I F ~ 910" n.cm?s?

l.E+09 ! T “HH; .\ T \‘HH; T “““‘; T T “““;

1.E-02 1.E-01 1E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08
Neutron Energy (eV)
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Effect of neutron filters on the neutron spectrum in the samples

Axial Flux Profile
1.8E+14 FUPEPSET S S S I
TS
. .
* ¢ ¢ *
__ 1.6E+14 .
Q)
(o]
€
3
£ 1.4E+14
5
2 ¢ B9
£ 1.2E+14 = B10
[t
AB11
m B g B B mE g
1.0E+14 -.l'- .Lﬁ.
A A A A 4 A u
A A A A A A A A A A |
A A,
8.0E+13 A
30 40 50 60 70 80 90
Axial Position (cm)

~9

i iIII . ‘ ‘ (C. Glass, INL, personal communication)



Example of U-238, Pu-242 and Cm-248 samples (100% pure)

us Pu9 PuO Pul Pu2 Am3 Cm?2
>0 days 0.991 8E-03 2E-05 2E-06 2E-09 2E-11 1E-11
Cadmium
100days | 999 2E-04 7E-08 2E-11 ) ] ;
Boron
Pu2 Am3 Cm4 Cm5 Cm6 Cm7
>0 days 0.964 3E-02 9E-04 6E-06 5E-09 4E-12
Cadmium
100days | g9q 3E-04 1E-07 2E-11 ; ;
Boron
Cm8 Bk9 cfo Cfo Cf1 cf2
>0 days 0.992 7E-03 AE-04 1E-04 8E-06 7E-08
Cadmium
100days | g9q 1E-04 3E-05 2E-07 1E-10 ;
Boron
—
1 . |daho National Laborator




ATLAS

Fragment Mass Analyzer
— lon Detector

Laser

Ablation/ F=T1
ECR A

lon Source | Hotlab |

CARIBU A, & ~ split-Pole

FN-Tandem Injector \ ~ Spectrometer

GP/Gammasphere|
Beamline

< ptomic — %

<7, Physics N
ATLAS Linac . I e Target Area Il

AE | 12T lon ¥ [ Bl o T8I T N % Large Scattering
4 / (7 - e BTITE gy > Facility
~— . estor et {1 b R —E=

Linac Accelerato r/VeIocﬂy---
Filter Target Area

(R. Pardo, ANL, personal communication)
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Example of a FMA Focal Plane Spectrum for 2°U AMS

500 - R
Joachimsthal 1645 :
236 cts (ion of interest)
— 400 +
2 m/q = 236/39
n -nﬁ
3 1z
S I
= 500 | g :
2 =4 lons with m/q = 236/39 6
o I¢| (structural material + cross-talk
& 3| from previous runs + 23U)
200 | E
I
200 225 250 275 300

X position (channel)
Isotope spectrum at the FMA focal plane detector for a sample from the
Joachimsthal mine — Measurement time ~ 10 min <2%°U/U ~ 1x10!

(M. Paul, NIMB, B172, (2000) 688-692)
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Accuracy/Precision

1. Only 14C AMS routinely operates in the <1-2% range.
2. Relieson:
 Dedicated facility
e Absolute calibration standards
* Rapid cycling between counted species and reference species
* Rapid cycling between unknowns and standards
3. Must also minimize cross talk between samples
 Laser ablation

 Quartz liner > .‘ ' (

4. Focusis to know and track transmission

= X
/ Ca Ny Ta \Ra&io of the
Ratio of A+1 l accelerator
and A counts ) . transmission
Actugl |_sotop|c for A and A+1
ratio in the
sample

’ﬂ :
1 " l Idaho National Laboratory




A |
Laser parameters: Optical Lay_out
U beam &~ 5 mm
A ~1000 nm

O E~ 10 mJ/pulse

O Pulse width ~ 8 ps 4//
O Focal spot ~ 0.4 mm - 10 J/cm?
- 2
I /3

1 —laser, 2 — beam expander (3:1), 3 and 4 — plane mirrors, 5 —focusing
lens, 6 — input window, 7 —ion beam transport pipe, 8 — ECR source
chamber, 9 - sample with holder, 10 — ECR plasma area, 11- ablated
material cloud

.« Firsttests with laser scheduled for the end of the summer 2010
O‘« °




Conclusions

O Integral reactor physics experiment under way to infer actinide
capture cross-sections from Th to Cf in three neutron spectra from
epithermal to fast

O Irradiation in ATR scheduled for Feb. 2011

d First AMS runs with un-irradiated samples scheduled for Feb.
2011 and with irradiated samples for October 2011

O Significant upgrades are under way at ATLAS to increase its
performances

1 Results in September 2012!

’ﬂ :
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Advantages of Laser Ablation vs Sputtering or Oven Technique

» Any solid material (metal, isolator, semiconductor) can be used

« Small amount of sample material can be fed into the source

 Feeding of material from sample holder is avoided

» Material is emitted preferentially perpendicular to sample surface

* Reliable control of ablated material amount by changing laser beam energy and
focal spot size

ﬂl Ii ldaho National Labororori



Choice of Laser

A psec pulse-length laser will be used to minimize throw-out of the molten
material during ablation process.

In comparison with nsec pulse length laser:

 Lower contamination of ECR vacuum chamber from materials previously used
» Better control of ablated material amount

iii —
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