

²³⁵U Data Set Testing with (mostly) ICSBEP Benchmarks

A. C. (Skip) KahlerBettis LaboratoryBechtel Bettis, Inc.

Presented at the November 2 - 4, 2004 Cross Section Evaluation Working Group (CSEWG) Meeting held at Brookhaven National Laboratory

- Bettis has performed continuous energy Monte Carlo eigenvalue calculations for a variety of ICSBEP uranium fueled benchmarks with ENDF/B-VI.8 cross sections or ENDF/B-VI.8 plus a LANL/ORNL ²³⁵U data set ("U235LA15B", internal date code is 7/29/2004).
 - Current results include benchmark k_{eff} normalization corrections from the 2004 ICSBEP Handbook.
- Eigenvalues presented on subsequent slides are calculated from tracking 50 million neutron histories in ten independent 5 million history jobs.
 - The 95% eigenvalue confidence interval, determined from the variance in the ten independent eigenvalue estimates, is typically less than 0.0005 Δk (i.e., roughly the size of the plot symbol).

- A majority of these calculations use models derived from ICSBEP evaluations:
 - xxx-SOL-THERM
 - 9 HEU evaluations, 31 critical configurations plus two ORNL experiments (L5, L6) not yet in ICSBEP.
 - 4 evaluations (8 critical configurations) include a H_2O reflector.
 - 9 LEU evaluations, 39 critical configurations
 - 4 evaluations (19 critical configurations) include a H_2O reflector.
 - HEU-MET-FAST-007 (ORNL)
 - HEU-MET-INTER-006 (LANL/ZEUS)
 - HEU-MET-FAST-072 (LANL/ZEUS)

Selected HEU-SOL-THERM ICSBEP Benchmarks

Benchmark	Description			
HEU-SOL-THERM-001 (encompass "RF#")	Unreflected cylinders (~28cm, ~33cm and ~51cm diameter) containing uranyl nitrate.			
HEU-SOL-THERM-009 (Case 3 = ORNL L7)	Water reflected spheres (6.4-liter) containing uranium oxyfluoride.			
HEU-SOL-THERM-010	Water reflected sphere (9.7-liter) containing uranium oxyfluoride			
HEU-SOL-THERM-011	Water reflected spheres (17-liter) containing uranium oxyfluoride.			
HEU-SOL-THERM-012 (ORNL L10)	Water reflected sphere (91-liter) containing uranium oxyfluoride.			
HEU-SOL-THERM-013 (ORNL1)	Unreflected sphere (174-liter) containing uranium nitrate.			
HEU-SOL-THERM-032 (ORNL10)	Unreflected sphere (48-inch diameter) containing uranyl nitrate.			
HEU-SOL-THERM-042 (encompass ORNL12 through ORNL23)	Unreflected cylinders (~77cm and ~137cm diameter) containing uranium nitrate.			
HEU-SOL-THERM-043 (Cases 2 and 3 are ORNL L8 and ORNL L9)	Unreflected spheres (17-liter, 91-liter and 174-liter) containing uranium oxyfluoride solution.			
ORNL L5, L6	Unreflected cylinders (13cm diameter) of uranium oxyfluoride. Low H/ ²³⁵ U ratios of 27 and 44 lead to large leakage.			

Selected LEU-SOL-THERM ICSBEP Benchmarks

Benchmark	Description			
LEU-SOL-THERM-001	"SHEBA-II". An unreflected $UO_2F_2 + H_2O$ cylindrical (~20 inch diameter) assembly.			
LEU-SOL-THERM-002	174-liter spheres of low enriched (4.9%) uranium oxyfluoride solutions. Case 1 is a water reflected solution, case 2 is unreflected.			
LEU-SOL-THERM-003	Bare spheres of 10% enriched uranyl nitrate water solutions. Cases 3, 6 and 9 are full spheres with increasing H-to- ²³⁵ U ratio.			
LEU-SOL-THERM-004	STACY; Water reflected, 10% enriched uranyl nitrate solution in a 60cm diameter cylindrical tank. Seven cases with varying gU/liter.			
LEU-SOL-THERM-007	STACY; Unreflected, 10% enriched uranyl nitrate solution in a 60cm diameter cylindrical tank. Five cases with varying gU/liter.			
LEU-SOL-THERM-016	STACY; Water reflected, 10% enriched uranyl nitrate solution in a rectangular (slab, ~28cm x ~69cm) tank. Seven cases with varying gU/liter.			
LEU-SOL-THERM-017	STACY; Unreflected, 10% enriched uranyl nitrate solution in a rectangular (slab, ~28cm x ~69cm) tank. Six cases with varying gU/liter.			
LEU-SOL-THERM-020	STACY; Water reflected, 10% enriched uranyl nitrate solution in an 80cm diameter cylindrical tank. Four cases with varying gU/liter.			
LEU-SOL-THERM-021	STACY; Unreflected, 10% enriched uranyl nitrate solution in an 80cm diameter cylindrical tank. Four cases with varying gU/liter.			

HEU- and LEU-SOL-THERM Characteristics

- Geometrically simple systems spheres, cylinders or slabs with and without water reflection.
- Materially simple ^{235,238}U, hydrogen, oxygen plus small amounts of fluorine or nitrogen
 - Thin walled aluminum or stainless steel container is neutronically unimportant (but is still incorporated in modern models).
 - ²³⁵U accounts for > 99% of fission.
 - ²³⁸U absorption ranges from a fraction of a per cent in HEU solutions to several per cent in LEU STACY solutions.

HEU- and LEU-SOL-THERM Characteristics

- With ENDF/B-VI.8, these 33 HEU solution systems yield an average eigenvalue of 0.9993.
 - The 95% confidence interval for the average is ± 0.0010 while the 95% confidence interval for the population is ± 0.0059 .
- With ENDF/B-VI.8, these 39 LEU solution systems yield an average eigenvalue of 0.9994.
 - The 95% confidence interval for the average is ± 0.0011 while the 95% confidence interval for the population is ± 0.0066 .
- Conclude that HEU solution benchmarks and LEU solution benchmarks may be combined into a single database.

Calculated Eigenvalues for ICSBEP Benchmarks

Calculated Eigenvalues for ICSBEP Benchmarks

Final xxx-SOL-THERM Observations

- Current ENDF/B-VI.8 (and JEFF-3.0 or JENDL-3.3) libraries yield accurate eigenvalues for ²³⁵U solution systems.
 - HEU-SOL-THERM and LEU-SOL-THERM eigenvalues are virtually unity with no underlying eigenvalue trend as a function of Above-Thermal Leakage Fraction (ATLF).
- This excellent performance is retained with the LANL/ORNL U235LA15B (7/29/2004) data set.

HEU-MET-xxx Testing

- HEU-MET-FAST-007 (ORNL)
 - 18 unreflected 10" x 10" and 8 unreflected 5" x 10" HEU slab configurations with interleaved sheets of polyethylene.
 - Average energy of a neutron causing fission is ~ 1.5 keV to ~ 750 keV.
 - 8 reflected 5" x 10" HEU slab configurations with interleaved polyethylene (reflector is 6" thick polyethylene on six sides).
 - Average energy of a neutron causing fission is \sim 30 eV to \sim 4.5 keV.
- HEU-MET-INTER-006 (LANL)
 - 4 copper reflected configurations. Repeating fuel unit is HEU and graphite.
 - Average energy of a neutron causing fission is ~3 keV to ~60 keV.
- HEU-MET-FAST-072 (LANL)
 - 2 copper reflected configurations. Repeating fuel unit is HEU and carbon steel.
 - Average energy of a neutron causing fission is ~190 keV.

HEU-MET-xxx Testing

- HEU-MET-FAST-007 (ORNL)
 - A ~0.3% eigenvalue bias is observed between Reflected and Unreflected Configurations, independent of ²³⁵U cross section data set.
 - There is no trend in calculated eigenvalue as a function of the Average Energy of a Neutron Causing Fission.
 - There is a pronounced dip in all ENDF/B-VI ²³⁵U v(E) evaluations between ~10 keV and ~100 keV. This dip was not present in the ENDF/B-V evaluation, but is not responsible for the reflector eigenvalue bias (nor, as will be shown, does it reduce the eigenvalue trend observed in the LANL/ZEUS benchmark analyses).

2.5000 2.4900 ENDF/B-VI.0 ENDF/B-VI.4 2.4800 ENDF/B6 Standard 2.4700 2.4600 υ_τ(E) 2.4500 2.4400 2.4300 2.4200 2.4100 2.4000 1.00E+00 1.00E+01 1.005+02 1.00E+06 1.00E+03 1.00E+04 1.00E+05 1.00E-03 1.00E-02 1.00E-01

Energy, eV

²³⁵U υ_T(E) 2.5000 ENDF/B-VI.0 2.4900 ENDF/B-VI.4 2.4800 ENDF/B-VI.5 2.4700 - ENDF/B6 Standard 2.4600 υ_τ(E) 2.4500 2.4400 2.4300 2.4200 2.4100 2.4000 1.005+02 1.00E+05 1.00E+00 1.00E+04 1.00E+06 1.00E-03 1.00E+01 1.00E+03 1.00E-02 1.00E-01

Energy, eV

2.5000 ENDF/B-VI.0 2.4900 ENDF/B-VI.4 ENDF/B-VI.5 2.4800 - ENDF/B6 Standard 2.4700 ENDF/B-V 2.4600 υ_τ(Ε) 2.4500 2.4400 2.4300 2.4200 2.4100 2.4000 1.00E+06 1.00E-03 1.00E+01 1.00E+02 1.00E+03 1.00E+04 1.005+05 1.00E-02 1.00E-01 1.00E+00

Energy, eV

HEU-MET-INTER-006 and HEU-MET-FAST-072 Eigenvalues (ZEUS Experiments with HEU and graphite or iron plus a copper reflector)

Benchmark	Average Energy of a Neutron Causing Fission, keV	ICSBEP ENDF/B-VI	Bettis ENDF/B- VI.8	Bettis ENDF/B- VI.8 plus LANL 12/10/2003 ²³⁵ U	Bettis ENDF/B- VI.8 plus LANL 12/10/2003 ²³⁵ U and modified v(E)	Bettis ENDF/B- VI.8 plus LANL 7/29/2004 ²³⁵ U
HMI-6.1	3.1	0.9912(6) ¹	0.98629(25)	0.98824(45)	0.98961(27)	0.98891(35)
HMI-6.2	6.5	0.9956(6)	0.99024(39)	0.99235(31)	0.99375(21)	0.99229(32)
HMI-6.3	15.7	0.9987(6)	0.99265(52)	0.99520(40)	0.99670(24)	0.99546(28)
HMI-6.4	58.9	1.0049(6)	0.99861(24)	1.00168(39)	1.00328(37)	1.00174(30)
HMF-72.1	190.9	1.0069(6) ²	1.00230(24)	1.00452(35)	1.00569(25)	1.00432(31)
HMF-72.2	192.4	1.0073(6)	1.00346(35)	1.00550(20)	1.00681(32)	1.00517(38)

¹ MCNP listing in HEU-MET-INTER-006, Appendix A, shows use of ".66c" (i.e., ENDF/B-VI.8) uranium cross sections. ² HEU-MET-FAST-072, Table 40, results with ENDF/B-VI.4.

Final Observations

- Calculations with a suite of 72 HEU-SOL-THERM and LEU-SOL-THERM benchmarks demonstrate that accurate eigenvalues are obtained.
 - Average eigenvalues are near unity and there is no eigenvalue trend as a function of above-thermal leakage fraction.
 - This is true for the final ENDF/B-VI.8 library and remains true with the latest LANL/ORNL ²³⁵U data set.
- Calculations with ICSBEP fast and intermediate spectrum benchmarks also yield near unity eigenvalues.
 - Hydrogen moderated benchmarks yield constant eigenvalues over a wide range of average fission energy (~ 30 eV to ~750 keV), although an unexplained reflector bias of ~0.3% is present.
 - An eigenvalue trend in excess of 1% is observed in the ZEUS/graphite benchmark (trend with AENCF?, with C/²³⁵U?, affect of Cu?, ...).
- 235 U v(E) should be re-examined to see if ad-hoc changes near 1 eV to 2 eV and above 10 keV should remain.

