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Introduction
• Recently, modeling and simulation (M&S) recognized as 

viable tools to achieve optimal design and operation of 
existing and next generation reactor systems (Gen-IV)

• Design and evaluation strategies projected to reduce 
reliance on expensive validating experiments and employ 
accurate M&S as primary design and analysis tool

• M&S must have uncertainty management framework
– Quantifiable error bounds on simulation results
– Means to understand various sources of errors
– Mean to reduce identified sources of errors
– Means to integrate experiments, and devise their optimal design
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Neutron Cross-Section
Many studies proved that nuclear data uncertainties 
constitute major source of errors in neutronics design 
calculations

21 eV37 eV
66 eVResonance 

Parameter 
Uncertainty leads to 
0.15% uncertainty in 
EOC k-effective  
($600K in  FCC)



Importance of Uncertainty Management

Define required system design margins
Identify key input data and associated models 
contributing most to quantified uncertainties
Alter design to make it less sensitive to identified 
key sources of uncertainties
Optimize experiments design to reduce uncertainties
Increase design freedom by reducing design margins 
realized by higher fidelity calculations
These goals to be achieved via simulation to minimize 
reliance on expensive experiments



Definitions

Consider a computational model describing an engineering system:

Sensitivity: Rate of Change of output with respect to input

Uncertainty: Confidence in calculated results

Data Assimilation: Reduction of calculations uncertainties
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Sensitivity Analysis Goal

Given a system model:

where           are input data (physical constants, 
operating conditions, control parameters, etc.), and 

are output responses (system attributes of 
interest to design, operation, and safety)
Calculate at a minimum first order derivatives of 
output responses with respect to input data
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Uncertainty Analysis Goal

Given system model and input data uncertainties 
calculate output responses uncertainties. 
Need: Sensitivity Analysis
Data uncertainties described at a minimum by 
probability distributions’ means and standard 
deviations
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Data Assimilation Goal

Given measured system responses, adapt model to increase 
simulation fidelity by accounting for:

Modeling errors due to simplifying assumptions 
(Unclear how to accomplish?)
Numerical errors due to discretization 
(Emerging posterior and goal-oriented techniques)
Boundary Conditions characterizing interaction between 
various modeling stages: (calls for rigorous approaches)
Input data errors 
(well-established approaches: requires model inversion, 
sensitivity analysis, and input data uncertainties)
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Uncertainty Management Steps
 Linear Approximation

Evaluate sensitivity information

Obtain input data covariance matrix

Calculate of output data covariance matrix

Identify key sources of errors: 
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Why UQ Challenging?
 Example:

 
Nuclear Reactors Modeling

Fully resolved description of 
reactor is not practical even 
with anticipated growth in 
computer power over 
foreseeable future

Multi-level homogenization 
theory adopted to render 
reactor calculations in 
practical run times with 
reasonable accuracy

Input data: cross-sections, 
design data, etc.

Output data: criticality, 
power, thermal margins, 
reactivity coefficients, etc.

Fuel
Gap

Clad

Uranium is contained 
in Ceramic fuel pellet

Stack is contained 
in metal rod

Rods are bundled 
together in an assembly

Fuel pellets are 
stacked together

Assemblies are combined 
to create the reactor core

Spatial Heterogeneity of nuclear reactor core

Cross-Sections dependence on neutron energy
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BWR Example (Size of I/O streams)

XPS

T
MG XP ENDF XP=C S C S

LPS

CSS

ENDFC ENDF Library

XS processor

Multi-Group Library

Lattice Physics

Few-Group Library

Core Simulator

Core Observables

T
FG LP MG LP=C S C S

T
CO CS FG CS=C S C S

104 x 104 --

107 x 104 --

107 x 107 --

106 x 107 6.7 hr/
51 days

106 x 106 --

105 x 106 5 min

105 x 105 --
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Sensitivity Forward Approach

• Perturb input data one-at-a-time to calculate 
sensitivities of all outputs with respect to the 
perturbed input

• Suited for problems with few inputs and many 
outputs

• Variations:
– Simultaneously perturb all inputs based on 

their prior PDFs; repeat until the output 
PDFs converge

– Suitable for non-Gaussian distributions, 
and nonlinear systems.

– Difficult to infer sensitivity information
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Sensitivity Reverse Approach

• Generalized Perturbation Theory
– Based on select output response, constructs adjoint model 

to calculate the response sensitivities with respect to all 
input data

– Suited for problems with many inputs and few outputs
– Difficult to implement for legacy codes
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Subspace Methods

• Replace original I/O streams by mathematical subspaces
• Subspaces are mathematical abstractions denoting 

change of basis in the I/O streams:
– Create new I/O variables (called active DOFs).
– Dimensions of subspaces are much smaller than original I/O 

streams
– Each variable (active DOF) is a linear combination of all original 

variables, with weights reflecting importance of original variables
– Subspaces identified by means of stochastic approach involving 

randomized matrix-vector and matrix-transpose-vector products
– Mathematically, this process is equivalent to finding rank 

revealing decomposition of sensitivity and uncertainty matrices
– Requirement: matrices be ill-conditioned
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Subspace Methods: 
Rank Revealing Decomposition
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Singular Values Spectrum

Singular Value Triplet Index
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Philosophy of Subspace Methods

In Euclidean sense, one can change n inputs to a 
computational model in n different ways, however, 
for most complex codes, only a subset r<<n leads 
to noticeable changes in outputs.
Active Degrees of Freedom denote the various 
changes in inputs leading to changes in outputs.
Most outputs of interest to designers and operators 
are often integral quantities, e.g. power, reactivity, 
thermal margins, etc., (hence dimensionality 
reduction)



Active and Inactive DOFs: Example

Consider a simple model with one output response 
(energy produced from fission) and n input data 
(fission cross-sections of n different isotopes)

Consider inverse problem:
How to select    for some E? 
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Background for Subspace Methods
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Singular Value Decomposition (SVD) 
is the algebraic version of SVE 
(Eckart and Young 1936-1939):

 

Singular Value Decomposition (SVD) 
is the algebraic version of SVE 
(Eckart and Young 1936-1939):

Every square-integrable kernel

 

has mean 
convergent singular value expansion of 
the form (Schmidt 1907-1908):

 

Every square-integrable kernel

 

has mean 
convergent singular value expansion of 
the form (Schmidt 1907-1908):

Dimensionality reduction induced by a multi-level 
homogenization-type model can be described by 
Fredholm integral Equation of the first kind

 

Dimensionality reduction induced by a multi-level 
homogenization-type model can be described by 
Fredholm integral Equation of the first kind
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Subspace Methods
Consider a multi-level model composed of k sub-models 
(also applies to various components of a single sub-model):

1. Forward Runs:

1 2 1                  ....            k k−Θ = Θ Θ Θ Θ

0min( , )k kr r r≤%

1 1min( , )k k kr r r− −≤% %

1 1 1min( , , ..., )k kr r r r rΘ −= ≤% % %

0r



Subspace Methods
2. Reverse Runs (ex. Adjoint):

* * * * *
1 2 1               ....            k k −Θ = Θ Θ Θ Θ rΘ

-Reverse model runs only rΘ  times, i.e. rank of overall model.
-Reverse runs only required for rank-deficient sub-models.



Subspace Methods
Q: What if reverse model infeasible for a sub-model or component?
A: Given input subspace of dimension r0 , run forward model r0 
times, and via a RVD, reduce the input subspace to rΘ

0rrΘ Θ

rΘ
rΘ Θ
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Example 1: Boiling Water Reactor

• Part of GE-Hitachi funded research on ‘Development of 
Adaptive Simulation Algorithms for BWRs’

• Given voluminous amount of data routinely collected from 
operating nuclear power plants, and maturity of neutronics 
calculations over past five decades, can one use a data 
assimilation to enhance agreement between measurements 
and predictions by adjusting cross-sections?



BWR Case Study

AMPX – ORNL ENDF Processing Code System
Processes ENDF covariance data into 44 
group energy structure
SCALE5.0 libraries (PUFF3)
1.

 

44GROUPV5COV

 

-

 

29 isotopes including 
H, B, Al, U, Pu, and Minor Actinides et al.

2.

 

44GROUPANLCOV

 

-

 

30 additional 
isotopes including Gd, Sm, Zr, et al.

SCALE5.1 libraries - Evaluations for V5 and 
V6 covariance data

TRITON - ORNL lattice physics code
GE14 10x10 lattice design 

Multi-group 
cross-sections

TRITON

Few-group 
cross-sections

FORMOSAB

keff, power 
distributions
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BWR: Few-Group Cross-section Uncertainties
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BWR: Power Distribution Uncertainties
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BWR: Data Assimilation “Virtual Approach”
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BWR: Data Assimilation “Virtual Approach”
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BWR: I/O Streams SVDs
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Example 2: Sodium Fast Reactor

• Work part of NERI on ‘Management of Data Uncertainties 
and Optimum Design of Experiments for Gen-IV systems’

• Selected for analysis: ABTR core + ZPR experiments
• Research requires following capabilities:

– Availability of group x-section uncertainties
– Propagation of group x-section uncertainties to ABTR 

key attributes uncertainties
– Data assimilation for x-sections using ZPR 

measurements
– Reevaluation of ABTR’s uncertainties using adjusted 

x-sections
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ABTR: I/O Streams SVD
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Results: 
Relative Reaction Rate Uncertainty Data
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Conclusions

• For multi-level models exhibiting reduction in dimensionality 
through various levels, significant computational savings are 
possible via a subspace approach

• Only information belonging to ‘active’ subspaces are 
communicated between various levels.

• Reverse models only required for the rank-deficient sub- 
models, thus relaxing need for full adjoint capability, which 
can be quite challenging for linked code system.

• If reverse model infeasible, use a two-step reduction process 
to identify the active I/O subspace.

• Result is a framework for uncertainty management that can 
be applied effectively on a routine basis
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Future Work

• Extend methodology to adjust resonance parameters 
directly using a probabilistic Monte Carlo model

• Develop methodology to situations when nonlinear 
behavior must be considered
– Weak nonlinearities: Guide deterministic calculations for second 

order derivatives, i.e. Hessian operators, using active DOFs (r) 
from linear model (Computational cost ~ r2)

– Strong nonlinearities: Hybrid deterministic-probabilistic approach 
to bias stochastic samples using active DOFs from linearized 
model

– Implicit assumption of these developments is that higher order 
derivatives may be ignored if first order derivatives are small
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Questions?
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